18 resultados para Computational complexity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Informática

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Intel R Xeon PhiTM is the first processor based on Intel’s MIC (Many Integrated Cores) architecture. It is a co-processor specially tailored for data-parallel computations, whose basic architectural design is similar to the ones of GPUs (Graphics Processing Units), leveraging the use of many integrated low computational cores to perform parallel computations. The main novelty of the MIC architecture, relatively to GPUs, is its compatibility with the Intel x86 architecture. This enables the use of many of the tools commonly available for the parallel programming of x86-based architectures, which may lead to a smaller learning curve. However, programming the Xeon Phi still entails aspects intrinsic to accelerator-based computing, in general, and to the MIC architecture, in particular. In this thesis we advocate the use of algorithmic skeletons for programming the Xeon Phi. Algorithmic skeletons abstract the complexity inherent to parallel programming, hiding details such as resource management, parallel decomposition, inter-execution flow communication, thus removing these concerns from the programmer’s mind. In this context, the goal of the thesis is to lay the foundations for the development of a simple but powerful and efficient skeleton framework for the programming of the Xeon Phi processor. For this purpose we build upon Marrow, an existing framework for the orchestration of OpenCLTM computations in multi-GPU and CPU environments. We extend Marrow to execute both OpenCL and C++ parallel computations on the Xeon Phi. We evaluate the newly developed framework, several well-known benchmarks, like Saxpy and N-Body, will be used to compare, not only its performance to the existing framework when executing on the co-processor, but also to assess the performance on the Xeon Phi versus a multi-GPU environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study is to contribute to the changing innovation management literature by providing an overview of different innovation types and organizational complexity factors. Aiming at a better understanding of effective innovation management, innovation and complexity are related to the formulation of an innovation strategy and interaction between different innovation types is further explored. The chosen approach in this study is to review the existing literature on different innovation types and organizational complexity factors in order to design a survey which allows for statistical measurement of their interactions and relationships to innovation strategy formulation. The findings demonstrate interaction between individual innovation types. Additionally, organizational complexity factors and different innovation types are significantly related to innovation strategy formulation. In particular, more closed innovation and incremental innovation positively influence the likelihood of innovation strategy formulation. Organizational complexity factors have an overall negative influence on innovation strategy formulation. In order to define best practices for innovation management and to guide managerial decision making, organizations need to be aware of the co-existence of different innovation types and formulate an innovation strategy to more closely align their innovation objectives.