19 resultados para Cement-based anodic system
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Phenolic acids are aromatic secondary plant metabolites, widely spread throughout the plant kingdom. Due to their biological and pharmacological properties, they have been playing an important role in phytotherapy and consequently techniques for their separation and purification are in need. This thesis aims at exploring new sustainable separation processes based on ionic liquids (ILs) in the extraction of biologically active phenolic acids. For that purpose, three phenolic acids with similar chemical structures were selected: cinnamic acid, p-coumaric acid and caffeic acid. In the last years, it has been shown that ionic liquids-based aqueous biphasic systems (ABSs) are valid alternatives for the extraction, recovery and purification of biomolecules when compared to conventional ABS or extractions carried out with organic solvents. In particular, cholinium-based ILs represent a clear step towards a greener chemistry, while providing means for the implementation of efficient techniques for the separation and purification of biomolecules. In this work, ABSs were implemented using cholinium carboxylate ILs using either high charge density inorganic salt (K3PO4) or polyethylene glycol (PEG) to promote the phase separation of aqueous solutions containing three different phenolic acids. These systems allow for the evaluation of effect of chemical structure of the anion on the extraction efficiency. Only one imidazolium-based IL was used in order to establish the effect of the cation chemical structure. The selective extraction of one single acid was also researched. Overall, it was observed that phenolic acids display very complex behaviours in aqueous solutions, from dimerization to polymerization and also hetero-association are quite frequent phenomena, depending on the pH conditions. These phenomena greatly hinder the correct quantification of these acids in solution.
Resumo:
Nowadays, reducing energy consumption is one of the highest priorities and biggest challenges faced worldwide and in particular in the industrial sector. Given the increasing trend of consumption and the current economical crisis, identifying cost reductions on the most energy-intensive sectors has become one of the main concerns among companies and researchers. Particularly in industrial environments, energy consumption is affected by several factors, namely production factors(e.g. equipments), human (e.g. operators experience), environmental (e.g. temperature), among others, which influence the way of how energy is used across the plant. Therefore, several approaches for identifying consumption causes have been suggested and discussed. However, the existing methods only provide guidelines for energy consumption and have shown difficulties in explaining certain energy consumption patterns due to the lack of structure to incorporate context influence, hence are not able to track down the causes of consumption to a process level, where optimization measures can actually take place. This dissertation proposes a new approach to tackle this issue, by on-line estimation of context-based energy consumption models, which are able to map operating context to consumption patterns. Context identification is performed by regression tree algorithms. Energy consumption estimation is achieved by means of a multi-model architecture using multiple RLS algorithms, locally estimated for each operating context. Lastly, the proposed approach is applied to a real cement plant grinding circuit. Experimental results prove the viability of the overall system, regarding both automatic context identification and energy consumption estimation.