30 resultados para BIPHASIC CATALYSIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

J Biol Inorg Chem (2011) 16:881–888 DOI 10.1007/s00775-011-0785-8

Relevância:

10.00% 10.00%

Publicador:

Resumo:

J Biol Inorg Chem (2008) 13:1185–1195 DOI 10.1007/s00775-008-0414-3

Relevância:

10.00% 10.00%

Publicador:

Resumo:

J Biol Inorg Chem (2007) 12:353–366 DOI 10.1007/s00775-006-0191-9

Relevância:

10.00% 10.00%

Publicador:

Resumo:

J Biol Inorg Chem (2006) 11: 609–616 DOI 10.1007/s00775-006-0110-0

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Biotecnologia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Biotecnologia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RESUMO: A Legionella é um bacilo Gram-negativo que replica dentro de protozoários como Acanthamoeba castellanii (A. castellanii) e no interior de macrófagos alveolares humanos, podendo resultar numa pneumonia grave. A Legionella em meio líquido tem um ciclo de vida bifásico, apresentando traços replicativos na fase exponencial e expressando factores transmissíveis na fase estacionária. Estudos recentes demonstraram que a Legionella precisa de assegurar um tempo preciso no seu ciclo de vida para efectuar com êxito a infecção das células hospedeiras. Muitos modelos de estudo foram desenvolvidos a fim de aumentar o conhecimento sobre o ciclo de vida intracelular e identificar os genes necessários para a modulação da célula hospedeira. Embora o conhecimento sobre a interacção bactéria-hospedeiro ainda seja limitado, parece que esta interacção gera um conjunto de características de virulência permitindo que a bactéria infecte células fagocíticas humanas e cause doença. O objectivo do presente projecto de investigação foi investigar e seleccionar genes críticos para a infecciosidade da Legionella pneumophila estirpe Paris (Lp Paris), desenhar e optimizar uma técnica de PCR em tempo real para o estudo da expressão génica e comparar o perfil de expressão da Lp Paris antes e depois da co-cultura em A. castellanii. Os resultados mostraram que oito dos 12 genes em estudo alteraram a sua expressão relativa após co-cultura em A. castellanii quando os ensaios foram realizados com culturas de Lp Paris na fase estacionária precoce (cinco foram induzidos e três reprimidos) Quando os ensaios foram realizados com culturas de Lp Paris na fase estacionária tardia 11 genes apresentaram repressão na sua expressão relativa. Analisando os resultados, concluímos que o perfil de expressão de Lp Paris foi modificado pela interacção com A. castellanii, no entanto essa mudança foi dependente da fase do seu ciclo de vida.-------ABSTRACT: Legionella is a pathogenic Gram-negative bacterium that replicates not only within aquatic protozoa like Acanthamoeba castellanii (A. castellanii), but also within human alveolar macrophages, which can result in a severe pneumonia. Legionella has a biphasic life cycle in broth, where exponential phase cultures display replicative traits and stationary bacteria express transmissive factors. Recent studies demonstrated that for successful infection of host cells, Legionella needs to ensure a precise timing of its life cycle. Many models of study were developed in order to learn about the intracellular life cycle and to identify the genes necessary for the host cell modulation. Although knowledge about the bacteria-host interaction is still limited, it appears that this interaction generate a pool of virulence traits, allowing the bacterium to infect human phagocytic cells and cause disease. The purpose of the present study was to investigate and select de critical genes for the infectivity of Legionella pneumophila strain Paris (Lp Paris), design and optimize a real time PCR technique for gene expression study and compare the expression profile of Lp Paris before and after co- culture of A. castellanii. The results show that eight of 12 genes in study changed its relative expression after coculture in A. castellanii when we performed the intracellular assays with early stationary phase Lp Paris cultures (five were induced and tree were repressed). When we performed the intracellular assays with late stationary phase Lp Paris cultures 11 genes showed a repressed relative expression. Analysing the results, we conclude that the expression profile of Lp Paris was modified by interaction with A. castellanii but this change was dependent of the timing of its life cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biochemistry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionic Liquids (ILs) belong to a class of compounds with unusual properties: very low vapour pressure; high chemical and thermal stability and the ability to dissolve a wide range of substances. A new field in research is evaluating the possibility to use natural chiral biomolecules for the preparation of chiral ionic liquids (CILs). This important challenge in synthetic chemistry can open new avenues of research in order to avoid some problems related with the intrinsic biodegradability and toxicity associated to conventional ILs. The research work developed aimed for the synthesis of CILs, their characterization and possible applications, based on biological moieties used either as chiral cations or anions, depending on the synthetic manipulation of the derivatives. Overall, a total of 28 organic salts, including CILs were synthesized: 9 based on L-cysteine derivatives, 12 based on L-proline, 3 based on nucleosides and 4 based on nucleotides. All these new CILs were completely characterized and their chemical and physical properties were evaluated. Some CILs based on L-cysteine have been applied for discrimination processes, including resolution of racemates and as a chiral catalyst for asymmetric Aldol condensation. L-proline derived CILs were also studied as chiral catalysts for Michael reaction. In parallel, the interactions of macrocyclic oligosugars called cyclodextrins (CDs) with several ILs were studied. It was possible to improve the solubility of CDs in water and serum. Additionally, fatty acids and steroids showed an increase in water solubility when ILs-CDs systems were used. The development of efficient and selective ILs-CDs systems is indispensable to expand the range of their applications in host-guest interactions, drug delivery systems or catalytic reactions. Novel salts derived from nucleobases were used in order to enhance the fluorescence in aqueous solution. Additionally, preliminary studies regarding ethyl lactate as an alternative solvent for asymmetric organocatalysis were performed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is important to have better evaluation and understanding of the motor neuron physiology, with the goal to early and objectively diagnose and treat patients with neurodegenerative pathologies. The Compound Muscle Action Potential (CMAP) scan is a non-invasive diagnosis technique for neurodegenerative pathologies, such as ALS, and enables a quick analysis of the muscle action potentials in response to motor nerve stimulation. This work aims to study the influence of different pulse modulated waveforms in peripheral nerve excitability by CMAP scan technique on healthy subjects. A total of 13 healthy subjects were submitted to the same test. The stimuli were applied in the medium nerve on the right wrist and electromyography signal collected on the Abductor Pollicis Brevis (APB) muscle surface on the right thumb. Stimulation was performed with an increasing intensities range from 4 to 30 mA, with varying steps, 3 stimuli per step. The procedure was repeated 4 times per subject, each repetition using a different single pulse stimulation waveform: monophasic square, monophasic triangular, monophasic quadratic and biphasic square. Results were retrieved from the averaging of the stimuli on each current intensity step. The square pulse needs less current intensity to generate the same response amplitude regarding the other waves and presents a more steep curve slope and this effect is gradually decreasing for the triangular and quadratic pulse,respectively, being the difference even more evident regarding the biphasic pulse. The control of the waveform stimulation pulse allows varying the stimulusresponse curve slope.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of this work is the valorization of residues from agro-industry giving them an added value. The valorization was performed by using a "green" and sustainable solvent - supercritical fluid, in this case carbon dioxide. Two residues and one biomass were used to produce two different final products, thereby emphasizing the versatility of the waste recovery - spent coffee grounds and microalgae Chlorella protothecoides to produce biodiesel, and tomato pomace to extract carotenoids. In the first part of this work it was demonstrated the possibility to obtain a conversion of coffee spent grounds oil into biodiesel, through an enzymatic transesterification reaction, of 98.01% with the following operating conditions: molar ratio oil:methanol 1:24, residence time 0.8 min, pressure 25 MPa, temperature 313,15K. In this first phase, it was also used the microalgae Chlorella protothecoides, a biomass, to produce biodiesel and favorable results were obtained with this green process compared with a traditional process - basic catalysis / acid. In the second part of this work, by an extraction with supercritical CO2 it was obtained 3.38% oil from tomato pomace under the following conditions: pressure 35.1 MPa, temperature 313,15K. It was found that this oil contains various carotenoids: β-carotene, lutein and lycopene. The latter is present in larger amount.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this thesis is the investigation and optimization of the synthesis of potential fragrances. This work is projected as collaboration between the University of Applied Sciences in Merseburg and the company Miltitz Aromatics GmbH in Bitterfeld‐Wolfen (Germany). Flavoured compounds can be synthesized in different ways and by various methods. In this work, methods like the phase transfer catalysis and the Cope‐rearrangement were investigated and applied, for getting a high yield and quantity of the desired substances and without any by‐products or side reactions. This involved the study of syntheses with different process parameters such as temperature, solvent, pressure and reaction time. The main focus was on Cope‐rearrangement, which is a common method in the synthesis of new potential fragrance compounds. The substances synthesized in this work have a hepta‐1,5‐diene‐structure and that is why they can easily undergo this [3,3]‐sigma tropic rearrangement. The lead compound of all research was 2,5‐dimethyl‐2‐vinyl‐4‐hexenenitrile (Neronil). Neronil is synthesized by an alkylation of 2‐methyl‐3‐butenenitrile with prenylchloride under basic conditions in a phase‐transfer system. In this work the yield of isolated Neronil is improved from about 35% to 46% by according to the execution conditions of the reaction. Additionally the amount of side product was decreased. This synthesized hexenenitrile involved not only the aforementioned 1,5‐diene‐structure, but also a cyano group, that makes this structure a suitable base for the synthesis of new potential fragrance compounds. It was observed that Neronil can be transferred into 2,5‐dimethyl‐2‐vinyl‐4‐hexenoic acid by a hydrolysis under basic conditions. After five hours the acid can be obtained with a yield of 96%. The following esterification is realized with isobutanol to produce 2,5‐dimethyl‐2‐vinyl‐4‐hexenoic acid isobutyl ester with quantitative conversion. It was observed that the Neronil and the corresponding ester can be converted into the corresponding Cope‐product, with a conversion of 30 % and 80%. Implementing the Cope‐rearrangement, the acid was heated and an unexpected decarboxylated product is formed. To achieve the best verification of reaction development and structure, scrupulous analyses were done using GC‐MS, 1H‐NMR and 13C‐ NMR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the work presented in this thesis was the development of an innovative approach for the separation of enantiomers of secondary alcohols, combining the use of an ionic liquid (IL) - both as solvent for conducting enzymatic kinetic resolution and as acylating agent - with the use of carbon dioxide (CO2) as solvent for extraction. Menthol was selected for testing this reaction/separation approach due to the increasing demand for this substance, which is widely used in the pharmaceutical, cosmetics and food industries. With a view to using an ionic ester as acylating agent, whose conversion led to the release of ethanol, and due to the need to remove this alcohol so as to drive reaction equilibrium forward, a phase equilibrium study was conducted for the ehtanol/(±)-menthol/CO2 system, at pressures between 8 and 10 MPa and temperatures between 40 and 50 oC. It was found that CO2 is more selective towards ethanol, especially at the lowest pressure and highest temperature tested, leading to separation factors in the range 1.6-7.6. The pressure-temperature-composition data obtained were correlated with the Peng-Robinson equation of state and the Mathias-Klotz-Prausnitz mixing rule. The model fit the experimental results well, with an average absolute deviation (AAD) of 3.7 %. The resolution of racemic menthol was studied using two lipases, namely lipase from Candida rugosa (CRL) and immobilized lipase B from Candida antarctica (CALB), and two ionic acylating esters. No reaction was detected in either case. (R,S)-1-phenylethanol was used next, and it was found that with CRL low, nonselective, conversion of the alcohol took place, whereas CALB led to an enantiomeric excess (ee) of the substrate of 95%, at 30% conversion. Other acylating agents were tested for the resolution of (±)-menthol, namely vinyl esters and acid anhydrides, using several lipases and varying other parameters that affect conversion and enantioselectivity, such as substrate concentration, solvent and temperature. One such acylating agent was propionic anhydride. It was thus performed a phase equilibrium study on the propionic anhydride/CO2 system, at temperatures between 35 and 50 oC. This study revealed that, at 35 oC and pressures from 7 MPa, the system is monophasic for all compositions. The enzymatic catalysis studies carried out with propionic anhydride revealed that the extent of noncatalyzed reaction was high, with a negative effect on enantioselectivity. These studies showed also that it was possible to reduce considerably the impact of the noncatalyzed reaction relative to the reaction catalyzed by CRL by lowering temperature to 4 oC. Vinyl decanoate was shown to lead to the best results at conditions amenable to a process combining the use of supercritical CO2 as agent for post-reaction separation. The use of vinyl decanoate in a number of IL solvents, namely [bmim][PF6], [bmim][BF4], [hmim][PF6], [omim][PF6], and [bmim][Tf2N], led to an enantiomeric excess of product (eep) values of over 96%, at about 50% conversion, using CRL. In n-hexane and supercritical CO2, reaction progressed more slowly.(...)