20 resultados para ARTIFICIAL MULTIPLE TETRAPLOID
Resumo:
Prostate cancer (PCa) is the most common form of cancer in men, in Europe (World Health Organization data). The most recent statistics, in Portuguese territory, confirm this scenario, which states that about 50% of Portuguese men may suffer from prostate cancer and 15% of these will die from this condition. Its early detection is therefore fundamental. This is currently being done by Prostate Specific Antigen (PSA) screening in urine but false positive and negative results are quite often obtained and many patients are sent to unnecessary biopsy procedures. This early detection protocol may be improved, by the development of point-of-care cancer detection devices, not only to PSA but also to other biomarkers recently identified. Thus, the present work aims to screen several biomarkers in cultured human prostate cell lines, serum and urine samples, developing low cost sensors based on new synthetic biomaterials. Biomarkers considered in this study are the following: prostate specific antigen (PSA), annexin A3 (ANXA3), microseminoprotein-beta (MSMB) and sarcosine (SAR). The biomarker recognition may occurs by means of molecularly imprinted polymers (MIP), which are a kind of plastic antibodies, and enzymatic approaches. The growth of a rigid polymer, chemically stable, using the biomarker as a template allows the synthesis of the plastic antibody. MIPs show high sensitivity/selectivity and present much longer stability and much lower price than natural antibodies. This nanostructured material was prepared on a carbon solid. The interaction between the biomarker and the sensing-material produces electrical signals generating quantitative or semi-quantitative data. These devices allow inexpensive and portable detection in point-of-care testing.
Resumo:
Nowadays, many of the manufactory and industrial system has a diagnosis system on top of it, responsible for ensuring the lifetime of the system itself. It achieves this by performing both diagnosis and error recovery procedures in real production time, on each of the individual parts of the system. There are many paradigms currently being used for diagnosis. However, they still fail to answer all the requirements imposed by the enterprises making it necessary for a different approach to take place. This happens mostly on the error recovery paradigms since the great diversity that is nowadays present in the industrial environment makes it highly unlikely for every single error to be fixed under a real time, no production stop, perspective. This work proposes a still relatively unknown paradigm to manufactory. The Artificial Immune Systems (AIS), which relies on bio-inspired algorithms, comes as a valid alternative to the ones currently being used. The proposed work is a multi-agent architecture that establishes the Artificial Immune Systems, based on bio-inspired algorithms. The main goal of this architecture is to solve for a resolution to the error currently detected by the system. The proposed architecture was tested using two different simulation environment, each meant to prove different points of views, using different tests. These tests will determine if, as the research suggests, this paradigm is a promising alternative for the industrial environment. It will also define what should be done to improve the current architecture and if it should be applied in a decentralised system.
Resumo:
This paper presents an application of an Artificial Neural Network (ANN) to the prediction of stock market direction in the US. Using a multilayer perceptron neural network and a backpropagation algorithm for the training process, the model aims at learning the hidden patterns in the daily movement of the S&P500 to correctly identify if the market will be in a Trend Following or Mean Reversion behavior. The ANN is able to produce a successful investment strategy which outperforms the buy and hold strategy, but presents instability in its overall results which compromises its practical application in real life investment decisions.
Resumo:
In this thesis, a feed-forward, back-propagating Artificial Neural Network using the gradient descent algorithm is developed to forecast the directional movement of daily returns for WTI, gold and copper futures. Out-of-sample back-test results vary, with some predictive abilities for copper futures but none for either WTI or gold. The best statistically significant hit rate achieved was 57% for copper with an absolute return Sharpe Ratio of 1.25 and a benchmarked Information Ratio of 2.11.
Resumo:
Fundação para a Ciência e a Tecnologia (FCT), Fundação Millennium bcp