28 resultados para ARI endemicity forecasting
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
A PhD Dissertation, presented as part of the requirements for the Degree of Doctor of Philosophy from the NOVA - School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics
Resumo:
RESUMO: A estrutura demográfica portuguesa é marcada por baixas taxas de natalidade e mortalidade, onde a população idosa representa uma fatia cada vez mais representativa, fruto de uma maior longevidade. A incidência do cancro, na sua generalidade, é maior precisamente nessa classe etária. A par de outras doenças igualmente lesivas (e.g. cardiovasculares, degenerativas) cuja incidência aumenta com a idade, o cancro merece relevo. Estudos epidemiológicos apresentam o cancro como líder mundial na mortalidade. Em países desenvolvidos, o seu peso representa 25% do número total de óbitos, percentagem essa que mais que duplica noutros países. A obesidade, a baixa ingestão de frutas e vegetais, o sedentarismo, o consumo de tabaco e a ingestão de álcool, configuram-se como cinco dos fatores de risco presentes em 30% das mortes diagnosticadas por cancro. A nível mundial e, em particular no Sul de Portugal, os cancros do estômago, recto e cólon apresentam elevadas taxas de incidência e de mortalidade. Do ponto de vista estritamente económico, o cancro é a doença que mais recursos consome enquanto que do ponto de vista físico e psicológico é uma doença que não limita o seu raio de ação ao doente. O cancro é, portanto, uma doença sempre atual e cada vez mais presente, pois reflete os hábitos e o ambiente de uma sociedade, não obstante as características intrínsecas a cada indivíduo. A adoção de metodologia estatística aplicada à modelação de dados oncológicos é, sobretudo, valiosa e pertinente quando a informação é oriunda de Registos de Cancro de Base Populacional (RCBP). A pertinência é justificada pelo fato destes registos permitirem aferir numa população específica, o risco desta sofrer e/ou vir a sofrer de uma dada neoplasia. O peso que as neoplasias do estômago, cólon e recto assumem foi um dos elementos que motivou o presente estudo que tem por objetivo analisar tendências, projeções, sobrevivências relativas e a distribuição espacial destas neoplasias. Foram considerados neste estudo todos os casos diagnosticados no período 1998-2006, pelo RCBP da região sul de Portugal (ROR-Sul). O estudo descritivo inicial das taxas de incidência e da tendência em cada uma das referidas neoplasias teve como base uma única variável temporal - o ano de diagnóstico - também designada por período. Todavia, uma metodologia que contemple apenas uma única variável temporal é limitativa. No cancro, para além do período, a idade à data do diagnóstico e a coorte de nascimento, são variáveis temporais que poderão prestar um contributo adicional na caracterização das taxas de incidência. A relevância assumida por estas variáveis temporais justificou a sua inclusão numaclasse de modelos designada por modelos Idade-Período-Coorte (Age-Period-Cohort models - APC), utilizada na modelação das taxas de incidência para as neoplasias em estudo. Os referidos modelos permitem ultrapassar o problema de relações não lineares e/ou de mudanças súbitas na tendência linear das taxas. Nos modelos APC foram consideradas a abordagem clássica e a abordagem com recurso a funções suavizadoras. A modelação das taxas foi estratificada por sexo. Foram ainda estudados os respectivos submodelos (apenas com uma ou duas variáveis temporais). Conhecido o comportamento das taxas de incidência, uma questão subsequente prende-se com a sua projeção em períodos futuros. Porém, o efeito de mudanças estruturais na população, ao qual Portugal não é alheio, altera substancialmente o número esperado de casos futuros com cancro. Estimativas da incidência de cancro a nível mundial obtidas a partir de projeções demográficas apontam para um aumento de 25% dos casos de cancro nas próximas duas décadas. Embora a projeção da incidência esteja associada a alguma incerteza, as projeções auxiliam no planeamento de políticas de saúde para a afetação de recursos e permitem a avaliação de cenários e de intervenções que tenham como objetivo a redução do impacto do cancro. O desconhecimento de projeções da taxa de incidência destas neoplasias na área abrangida pelo ROR-Sul, levou à utilização de modelos de projeção que diferem entre si quanto à sua estrutura, linearidade (ou não) dos seus coeficientes e comportamento das taxas na série histórica de dados (e.g. crescente, decrescente ou estável). Os referidos modelos pautaram-se por duas abordagens: (i)modelos lineares no que concerne ao tempo e (ii) extrapolação de efeitos temporais identificados pelos modelos APC para períodos futuros. Foi feita a projeção das taxas de incidência para os anos de 2007 a 2010 tendo em conta o género, idade e neoplasia. É ainda apresentada uma estimativa do impacto económico destas neoplasias no período de projeção. Uma questão pertinente e habitual no contexto clínico e a que o presente estudo pretende dar resposta, reside em saber qual a contribuição da neoplasia em si para a sobrevivência do doente. Nesse sentido, a mortalidade por causa específica é habitualmente utilizada para estimar a mortalidade atribuível apenas ao cancro em estudo. Porém, existem muitas situações em que a causa de morte é desconhecida e, mesmo que esta informação esteja disponível através dos certificados de óbito, não é fácil distinguir os casos em que a principal causa de morte é devida ao cancro. A sobrevivência relativa surge como uma medida objetiva que não necessita do conhecimento da causa específica da morte para o seu cálculo e dar-nos-á uma estimativa da probabilidade de sobrevivência caso o cancro em análise, num cenário hipotético, seja a única causa de morte. Desconhecida a principal causa de morte nos casos diagnosticados com cancro no registo ROR-Sul, foi determinada a sobrevivência relativa para cada uma das neoplasias em estudo, para um período de follow-up de 5 anos, tendo em conta o sexo, a idade e cada uma das regiões que constituem o registo. Foi adotada uma análise por período e as abordagens convencional e por modelos. No epílogo deste estudo, é analisada a influência da variabilidade espaço-temporal nas taxas de incidência. O longo período de latência das doenças oncológicas, a dificuldade em identificar mudanças súbitas no comportamento das taxas, populações com dimensão e riscos reduzidos, são alguns dos elementos que dificultam a análise da variação temporal das taxas. Nalguns casos, estas variações podem ser reflexo de flutuações aleatórias. O efeito da componente temporal aferida pelos modelos APC dá-nos um retrato incompleto da incidência do cancro. A etiologia desta doença, quando conhecida, está associada com alguma frequência a fatores de risco tais como condições socioeconómicas, hábitos alimentares e estilo de vida, atividade profissional, localização geográfica e componente genética. O “contributo”, dos fatores de risco é, por vezes, determinante e não deve ser ignorado. Surge, assim, a necessidade em complementar o estudo temporal das taxas com uma abordagem de cariz espacial. Assim, procurar-se-á aferir se as variações nas taxas de incidência observadas entre os concelhos inseridos na área do registo ROR-Sul poderiam ser explicadas quer pela variabilidade temporal e geográfica quer por fatores socioeconómicos ou, ainda, pelos desiguais estilos de vida. Foram utilizados os Modelos Bayesianos Hierárquicos Espaço-Temporais com o objetivo de identificar tendências espaço-temporais nas taxas de incidência bem como quantificar alguns fatores de risco ajustados à influência simultânea da região e do tempo. Os resultados obtidos pela implementação de todas estas metodologias considera-se ser uma mais valia para o conhecimento destas neoplasias em Portugal.------------ABSTRACT: mortality rates, with the elderly being an increasingly representative sector of the population, mainly due to greater longevity. The incidence of cancer, in general, is greater precisely in that age group. Alongside with other equally damaging diseases (e.g. cardiovascular,degenerative), whose incidence rates increases with age, cancer is of special note. In epidemiological studies, cancer is the global leader in mortality. In developed countries its weight represents 25% of the total number of deaths, with this percentage being doubled in other countries. Obesity, a reduce consumption of fruit and vegetables, physical inactivity, smoking and alcohol consumption, are the five risk factors present in 30% of deaths due to cancer. Globally, and in particular in the South of Portugal, the stomach, rectum and colon cancer have high incidence and mortality rates. From a strictly economic perspective, cancer is the disease that consumes more resources, while from a physical and psychological point of view, it is a disease that is not limited to the patient. Cancer is therefore na up to date disease and one of increased importance, since it reflects the habits and the environment of a society, regardless the intrinsic characteristics of each individual. The adoption of statistical methodology applied to cancer data modelling is especially valuable and relevant when the information comes from population-based cancer registries (PBCR). In such cases, these registries allow for the assessment of the risk and the suffering associated to a given neoplasm in a specific population. The weight that stomach, colon and rectum cancers assume in Portugal was one of the motivations of the present study, that focus on analyzing trends, projections, relative survival and spatial distribution of these neoplasms. The data considered in this study, are all cases diagnosed between 1998 and 2006, by the PBCR of Portugal, ROR-Sul.Only year of diagnosis, also called period, was the only time variable considered in the initial descriptive analysis of the incidence rates and trends for each of the three neoplasms considered. However, a methodology that only considers one single time variable will probably fall short on the conclusions that could be drawn from the data under study. In cancer, apart from the variable period, the age at diagnosis and the birth cohort are also temporal variables and may provide an additional contribution to the characterization of the incidence. The relevance assumed by these temporal variables justified its inclusion in a class of models called Age-Period-Cohort models (APC). This class of models was used for the analysis of the incidence rates of the three cancers under study. APC models allow to model nonlinearity and/or sudden changes in linear relationships of rate trends. Two approaches of APC models were considered: the classical and the one using smoothing functions. The models were stratified by gender and, when justified, further studies explored other sub-models where only one or two temporal variables were considered. After the analysis of the incidence rates, a subsequent goal is related to their projections in future periods. Although the effect of structural changes in the population, of which Portugal is not oblivious, may substantially change the expected number of future cancer cases, the results of these projections could help planning health policies with the proper allocation of resources, allowing for the evaluation of scenarios and interventions that aim to reduce the impact of cancer in a population. Worth noting that cancer incidence worldwide obtained from demographic projections point out to an increase of 25% of cancer cases in the next two decades. The lack of projections of incidence rates of the three cancers under study in the area covered by ROR-Sul, led us to use a variety of forecasting models that differ in the nature and structure. For example, linearity or nonlinearity in their coefficients and the trend of the incidence rates in historical data series (e.g. increasing, decreasing or stable).The models followed two approaches: (i) linear models regarding time and (ii) extrapolation of temporal effects identified by the APC models for future periods. The study provide incidence rates projections and the numbers of newly diagnosed cases for the year, 2007 to 2010, taking into account gender, age and the type of cancer. In addition, an estimate of the economic impact of these neoplasms is presented for the projection period considered. This research also try to address a relevant and common clinical question in these type of studies, regarding the contribution of the type of cancer to the patient survival. In such studies, the primary cause of death is commonly used to estimate the mortality specifically due to the cancer. However, there are many situations in which the cause of death is unknown, or, even if this information is available through the death certificates, it is not easy to distinguish the cases where the primary cause of death is the cancer. With this in mind, the relative survival is an alternative measure that does not need the knowledge of the specific cause of death to be calculated. This estimate will represent the survival probability in the hypothetical scenario of a certain cancer be the only cause of death. For the patients with unknown cause of death that were diagnosed with cancer in the ROR-Sul, the relative survival was calculated for each of the cancers under study, for a follow-up period of 5 years, considering gender, age and each one of the regions that are part the registry. A period analysis was undertaken, considering both the conventional and the model approaches. In final part of this study, we analyzed the influence of space-time variability in the incidence rates. The long latency period of oncologic diseases, the difficulty in identifying subtle changes in the rates behavior, populations of reduced size and low risk are some of the elements that can be a challenge in the analysis of temporal variations in rates, that, in some cases, can reflect simple random fluctuations. The effect of the temporal component measured by the APC models gives an incomplete picture of the cancer incidence. The etiology of this disease, when known, is frequently associated to risk factors such as socioeconomic conditions, eating habits and lifestyle, occupation, geographic location and genetic component. The "contribution"of such risk factors is sometimes decisive in the evolution of the disease and should not be ignored. Therefore, there was the need to consider an additional approach in this study, one of spatial nature, addressing the fact that changes in incidence rates observed in the ROR-Sul area, could be explained either by temporal and geographical variability or by unequal socio-economic or lifestyle factors. Thus, Bayesian hierarchical space-time models were used with the purpose of identifying space-time trends in incidence rates together with the the analysis of the effect of the risk factors considered in the study. The results obtained and the implementation of all these methodologies are considered to be an added value to the knowledge of these neoplasms in Portugal.
Resumo:
This paper analyzes the in-, and out-of sample, predictability of the stock market returns from Eurozone’s banking sectors, arising from bank-specific ratios and macroeconomic variables, using panel estimation techniques. In order to do that, I set an unbalanced panel of 116 banks returns, from April, 1991, to March, 2013, to constitute equal-weighted country-sorted portfolios representative of the Austrian, Belgian, Finish, French, German, Greek, Irish, Italian, Portuguese and Spanish banking sectors. I find that both earnings per share (EPS) and the ratio of total loans to total assets have in-sample predictive power over the portfolios’ monthly returns whereas, regarding the cross-section of annual returns, only EPS retain significant explanatory power. Nevertheless, the sign associated with the impact of EPS is contrarian to the results of past literature. When looking at inter-yearly horizon returns, I document in-sample predictive power arising from the ratios of provisions to net interest income, and non-interest income to net income. Regarding the out-of-sample performance of the proposed models, I find that these would only beat the portfolios’ historical mean on the month following the disclosure of year-end financial statements. Still, the evidence found is not statistically significant. Finally, in a last attempt to find significant evidence of predictability of monthly and annual returns, I use Fama and French 3-Factor and Carhart models to describe the cross-section of returns. Although in-sample the factors can significantly track Eurozone’s banking sectors’ stock market returns, they do not beat the portfolios’ historical mean when forecasting returns.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Double Degree in Economics from the Nova School of Business and Economics and University of Maastricht
Resumo:
Digital Businesses have become a major driver for economic growth and have seen an explosion of new startups. At the same time, it also includes mature enterprises that have become global giants in a relatively short period of time. Digital Businesses have unique characteristics that make the running and management of a Digital Business much different from traditional offline businesses. Digital businesses respond to online users who are highly interconnected and networked. This enables a rapid flow of word of mouth, at a pace far greater than ever envisioned when dealing with traditional products and services. The relatively low cost of incremental user addition has led to a variety of innovation in pricing of digital products, including various forms of free and freemium pricing models. This thesis explores the unique characteristics and complexities of Digital Businesses and its implications on the design of Digital Business Models and Revenue Models. The thesis proposes an Agent Based Modeling Framework that can be used to develop Simulation Models that simulate the complex dynamics of Digital Businesses and the user interactions between users of a digital product. Such Simulation models can be used for a variety of purposes such as simple forecasting, analysing the impact of market disturbances, analysing the impact of changes in pricing models and optimising the pricing for maximum revenue generation or a balance between growth in usage and revenue generation. These models can be developed for a mature enterprise with a large historical record of user growth rate as well as for early stage enterprises without much historical data. Through three case studies, the thesis demonstrates the applicability of the Framework and its potential applications.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Master’s Double Degree in Finance and Financial Economics from NOVA – School of Business and Economics and Maastricht University
Resumo:
Machine ethics is an interdisciplinary field of inquiry that emerges from the need of imbuing autonomous agents with the capacity of moral decision-making. While some approaches provide implementations in Logic Programming (LP) systems, they have not exploited LP-based reasoning features that appear essential for moral reasoning. This PhD thesis aims at investigating further the appropriateness of LP, notably a combination of LP-based reasoning features, including techniques available in LP systems, to machine ethics. Moral facets, as studied in moral philosophy and psychology, that are amenable to computational modeling are identified, and mapped to appropriate LP concepts for representing and reasoning about them. The main contributions of the thesis are twofold. First, novel approaches are proposed for employing tabling in contextual abduction and updating – individually and combined – plus a LP approach of counterfactual reasoning; the latter being implemented on top of the aforementioned combined abduction and updating technique with tabling. They are all important to model various issues of the aforementioned moral facets. Second, a variety of LP-based reasoning features are applied to model the identified moral facets, through moral examples taken off-the-shelf from the morality literature. These applications include: (1) Modeling moral permissibility according to the Doctrines of Double Effect (DDE) and Triple Effect (DTE), demonstrating deontological and utilitarian judgments via integrity constraints (in abduction) and preferences over abductive scenarios; (2) Modeling moral reasoning under uncertainty of actions, via abduction and probabilistic LP; (3) Modeling moral updating (that allows other – possibly overriding – moral rules to be adopted by an agent, on top of those it currently follows) via the integration of tabling in contextual abduction and updating; and (4) Modeling moral permissibility and its justification via counterfactuals, where counterfactuals are used for formulating DDE.
Resumo:
Research literature and regulators are unconditional in pointing the disclosure of operating cash flow through direct method a section of unique information. Besides the intuitive facet, it is also consistent in forecasting future operating cash flows and a cohesive piece to financial statement puzzle. Bearing this in mind, I produce an analysis on the usefulness and predictive ability on the disclosure of gross cash receipts and payments over the disclosure of reconciliation between net income and accruals for two markets with special features, Portugal and Spain. Results validate the usefulness of direct method format in predicting future operating cash flow. Key
Resumo:
RESUMO - Introdução — O presente estudo descreve os cenários de impacto que uma eventual pandemia de gripe poderá ter na população portuguesa e nos serviços de saúde. Trata-se de uma versão actualizada dos cenários preliminares que têm vindo a ser elaborados e discutidos desde 2005. Material e métodos — Os cenários assumem que a pandemia ocorrerá em duas ondas das quais a primeira (taxa de ataque: 10%) será menos intensa do que a segunda (taxas de ataque: 20%, 25% ou 30%). Neste trabalho são descritos apenas os cenários respeitantes à situação mais grave (taxa de ataque global = 10% + 30%). A elaboração dos cenários utilizou o método proposto por Meltzer, M. I., Cox, N. J. e Fukuda, K. (1999) mas com quase todos os parâmetros adaptados à população portuguesa. Esta adaptação incidiu sobre: 1. duração da pandemia; 2. taxa de letalidade; 3. percentagem da população com risco elevado de complicações; 4. percentagem de doentes com suspeita de gripe que procurará consulta; 5. tempo entre o início dos sintomas e a procura de cuidados; 6. percentagem de doentes que terá acesso efectivo a antiviral; 7. taxa de hospitalização por gripe e tempo médio de hospitalização; 8. percentagem de doentes hospitalizados que necessitarão de cuidados intensivos (CI) e tempo de internamento em CI; 9. efectividade de oseltamivir para evitar complicações e morte. Resultados — Os cenários correspondentes à situação mais grave (taxa de ataque global: 10% + 30%) são apresentados sem qualquer intervenção e, também, com utilização de oseltamivir para fins terapêuticos. Os resultados sem intervenção para o cenário «provável» indicam: • número total de casos — 4 142 447; • número total de indivíduos a necessitar de consulta — 5 799 426; • número total de hospitalizações — 113 712; • número total de internamentos em cuidados intensivos — 17 057; • número total de óbitos — 32 051; • número total de óbitos, nas semanas com valor máximo — 1.a onda: 2551, 2.a onda: 7651. Quando os cenários foram simulados entrando em linha de conta com a utilização de oseltamivir (considerando uma efectividade de 10% e 30%), verificou-se uma redução dos valores dos óbitos e hospitalizações calculados. O presente artigo também apresenta a distribuição semanal, no período de desenvolvimento da pandemia, dos vários resultados obtidos. Discussão — Os resultados apresentados devem ser interpretados como «cenários» e não como «previsões». De facto, as incertezas existentes em relação à doença e ao seu agente não permitem prever com rigor suficiente os seus impactos sobre a população e sobre os serviços de saúde. Por isso, os cenários agora apresentados servem, sobretudo, para fins de planeamento. Assim, a preparação da resposta à eventual pandemia pode ser apoiada em valores cujas ordens de grandeza correspondem às situações de mais elevada gravidade. Desta forma, a sua utilização para outros fins é inadequada e é vivamente desencorajada pelos autores.
Resumo:
As florestas são uma fonte importante de recursos naturais, desempenhando um papel fulcral na sustentabilidade ambiental. A sua gestão quer territorial quer económica, conduz a uma maximização da produção, sem alteração da qualidade da matéria-prima. Portugal apresenta mais de um terço do seu território coberto por floresta, apresentando uma possibilidade de aplicação de sistemas de gestão, territorial e económica que maximizem a sua produção. Os Sistemas de Informação Geográfica (SIG) são modelos da realidade em que é possível integrar toda a informação disponível sobre um assunto tendo por base um campo comum a todos as variáveis, a localização geográfica. Os SIG podem contribuir de diversas formas para um maior desenvolvimento das rotinas e ferramentas de planeamento e gestão florestal. A sua integração com modelos quantitativos para planeamento e gestão de florestas é uma mais-valia nesta área. Nesta dissertação apresentam-se modelos geoestatísticos, com recurso a Sistemas de Informação Geográfica, de apoio e suporte à produção de pinha em Pinheiro-manso (Pinus pinea L.). Procurando estimar as áreas com melhor propensão à produção, a partir de dados amostrais. Estes foram previamente estudados tendo sido selecionadas quatro variáveis: largura da copa, área basal, altura da árvore e produção de pinha. A geoestatística aplicada, inclui modelos de correlação espacial: kriging, onde são atribuídos pesos às amostras a partir de uma análise espacial baseada no variograma experimental. Foi utilizada a extensão Geostatistical Analyst do ArcGis da ESRI, para realizar 96 krigings para as quatro variáveis em estudo, com diferentes parametrizações, destes foram selecionados 8 krigings. Com base nos critérios de adequação dos modelos e da análise de resultados da predição dos erros - cross validation. O resultado deste estudo é apresentado através de mapas de previsão para a produção de pinha em Pinheiro manso, em que foram analisadas áreas com maior e menor probabilidade de produção tendo-se realizado análises de comparação de variáveis. Através da interseção de todas as variáveis com a produção, podemos concluir que os concelhos com maiores áreas de probabilidade de produção de pinha em Pinheiro manso, da área de estudo, são Alcácer do Sal, Montemor-o-Novo, Vendas Novas, Coruche e Chamusca. Com a realização de um cruzamento de dados entre os resultados obtidos dos krigings, e a Carta de Uso e Ocupação do Solo de Portugal Continental para 2007 (COS2007), realizaram-se mapas de previsão para a expansão do Pinheiro manso. Nas áreas de expansão conseguimos atingir aumentos mínimos na ordem dos 11% e máximo na ordem dos 61%. No total consegue-se atingir aproximadamente 128 mil ha para área de expansão do Pinheiro manso. Superando, os valores esperados pelos Planos Regionais de Ordenamento Florestal, abrangidos pela área da amostra em estudo, em que é esperado um incremento de cerca de 130 mil hectares de área de Pinheiro manso para 2030.
Resumo:
This paper addresses the growing difficulties automobile manufacturers face within their after sales business: an increasing number of trade obstacles set up by import countries discriminates against the foreign suppliers and impedes the international sales of genuine parts. The purpose of the study is to explore the emergence of trade restrictive product certification systems, which affect spare parts exports of automobile manufacturers. The methodology used includes review of the literature and an empirical study based on qualitative interviews with representatives of major stakeholders of the automotive after sales business. Relevant key drivers, which initiate the introduction of technical regulations in importing countries, are identified and analysed to evaluate their effect on the emerging trade policy. The analysis of the key drivers outlines that several interacting components, such as the global competitiveness of the country, macroeconomic and microeconomic factors, and certain country-specific variables induce trade restrictive product certification systems. The findings allow for an early detection of the emergence of product certification systems and provide a means to early recognise the risks and opportunities for the sales of automotive spare parts in the automakers’ target markets. This allows the manufacturers to react immediately and adapt in time to the upcoming changes.