35 resultados para 3D Imaging


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magazine Digital eUAU - Março 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation to obtain master degree in Biotechnology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Geológica (Georrecursos)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Informática

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia de Materiais

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breast cancer is the most common cancer among women, being a major public health problem. Worldwide, X-ray mammography is the current gold-standard for medical imaging of breast cancer. However, it has associated some well-known limitations. The false-negative rates, up to 66% in symptomatic women, and the false-positive rates, up to 60%, are a continued source of concern and debate. These drawbacks prompt the development of other imaging techniques for breast cancer detection, in which Digital Breast Tomosynthesis (DBT) is included. DBT is a 3D radiographic technique that reduces the obscuring effect of tissue overlap and appears to address both issues of false-negative and false-positive rates. The 3D images in DBT are only achieved through image reconstruction methods. These methods play an important role in a clinical setting since there is a need to implement a reconstruction process that is both accurate and fast. This dissertation deals with the optimization of iterative algorithms, with parallel computing through an implementation on Graphics Processing Units (GPUs) to make the 3D reconstruction faster using Compute Unified Device Architecture (CUDA). Iterative algorithms have shown to produce the highest quality DBT images, but since they are computationally intensive, their clinical use is currently rejected. These algorithms have the potential to reduce patient dose in DBT scans. A method of integrating CUDA in Interactive Data Language (IDL) is proposed in order to accelerate the DBT image reconstructions. This method has never been attempted before for DBT. In this work the system matrix calculation, the most computationally expensive part of iterative algorithms, is accelerated. A speedup of 1.6 is achieved proving the fact that GPUs can accelerate the IDL implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breast cancer is the most common type of cancer among women all over the world. An important issue that is not commonly addressed in breast cancer imaging literature is the importance of imaging the underarm region—where up to 80% of breast cancer cells can metastasise to. The first axillary lymph nodes to receive drainage from the primary tumour in the breast are called Sentinel Node. If cancer cells are found in the Sentinel Node, there is an increased risk of metastatic breast cancer which makes this evaluation crucial to decide what follow-up exams and therapy to follow. However, non-invasive detection of cancer cells in the lymph nodes is often inconclusive, leading to the surgical removal of too many nodes which causes adverse side-effects for patients. Microwave Imaging is one of the most promising non-invasive imaging modalities for breast cancer early screening and monitoring. This novel study tests the feasibility of imaging the axilla region by means of the simulation of an Ultra-Wideband Microwave Imaging system. Simulations of such system are completed in several 2D underarm models that mimic the axilla. Initial imaging results are obtained by means of processing the simulated backscattered signals by eliminating artefacts caused by the skin and beamforming the processed signals in order to time-align all the signals recorded at each antenna. In this dissertation several image formation algorithms are implemented and compared by visual inspection of the resulting images and through a range of performance metrics, such as Signal-to-Clutter Ratio and FullWidth Half Maximum calculations. The results in this study showed that Microwave Imaging is a promising technique that might allow to identify the presence and location of metastasised cancer cells in axillary lymph nodes, enabling the non-invasive evaluation of breast cancer staging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro/nano wrinkled patterns on cross-linked urethane/urea polymeric flexible free standing films with two soft segments, polypropylene oxide and polybutadiene, can be induced by UV-irradiation. The ability to write/erase these 3D structures, in a controlled manner, is the main focus of this work. The imprinting of the wrinkled structures was accomplished by swelling in an appropriate solvent followed by drying the membranes after the cross-linking process and UV irradiation. The surface tailoring of the elastomeric membranes was imaged by optical microscopy, scanning electronic microscopy and by atomic force microscopy. To erase the wrinkled structures the elastomers were swollen. The swelling as well as the sol/gel fraction and the UV radiation were tuned in order to control the wrinkles characteristics. It was found that the wrinkles wavelength, in the order of microns (1±0,25μm), was stamped by the UV radiation intensity and exposure time while the wrinkles' amplitude, in the order of nanometers (150-450 nm), was highly dependent on the swelling and sol/gel fraction. A prototype for volatile organic compounds detection was developed taking advantage of the unique 3D micro/nano wrinkles features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffusion Kurtosis Imaging (DKI) is a fairly new magnetic resonance imag-ing (MRI) technique that tackles the non-gaussian motion of water in biological tissues by taking into account the restrictions imposed by tissue microstructure, which are not considered in Diffusion Tensor Imaging (DTI), where the water diffusion is considered purely gaussian. As a result DKI provides more accurate information on biological structures and is able to detect important abnormalities which are not visible in standard DTI analysis. This work regards the development of a tool for DKI computation to be implemented as an OsiriX plugin. Thus, as OsiriX runs under Mac OS X, the pro-gram is written in Objective-C and also makes use of Apple’s Cocoa framework. The whole program is developed in the Xcode integrated development environ-ment (IDE). The plugin implements a fast heuristic constrained linear least squares al-gorithm (CLLS-H) for estimating the diffusion and kurtosis tensors, and offers the user the possibility to choose which maps are to be generated for not only standard DTI quantities such as Mean Diffusion (MD), Radial Diffusion (RD), Axial Diffusion (AD) and Fractional Anisotropy (FA), but also DKI metrics, Mean Kurtosis (MK), Radial Kurtosis (RK) and Axial Kurtosis (AK).The plugin was subjected to both a qualitative and a semi-quantitative analysis which yielded convincing results. A more accurate validation pro-cess is still being developed, after which, and with some few minor adjust-ments the plugin shall become a valid option for DKI computation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Engenharia de Tecidos surge da necessidade recorrente de regenerar ou recriar órgãos e tecidos danificados devido a vários tipos de trauma. A carência de funcionalidades resultante pode ser resolvida através da implantação de substitutos bio-sintéticos. O presente trabalho consiste na produção de matrizes porosas 3D baseadas em réplicas invertidas de cristais coloidais com futura aplicação em substituintes ósseos sintéticos para fraturas de não-união. O substituinte ósseo consiste numa estrutura denominada Inverse colloidal crystal (ICC), em que a sua organização singular resulta numa homogénea proliferação celular e num aumento das propriedades mecânicas, quando comparada com outros substituintes. O primeiro passo para a obtenção desta estrutura é a produção de microesferas de poliestireno, por uma técnica baseada em microfluídica. Posteriormente as microesferas são empacotadas resultando numa estrutura coesa com ligações entre microesferas vizinhas. O preenchimento dos espaços vazios entre microesferas pelo biomaterial pretendido e posterior remoção das microesferas dá origem à estrutura porosa do ICC. ICCs poliméricos (ϕCs = 1,00) e compósitos (ϕCs = 0,86 e ϕHA = 0,14; ϕCs = 0,67 e ϕHA = 0,33; ϕCs = ϕHA = 0,50) são produzidos e as suas propriedades mecânicas são testadas através de ensaios de compressão e comparadas com outros substituintes sintéticos. Para avaliação do comportamento dos materiais em contacto com meio biológico, foram realizados testes de citotoxicidade que revelaram uma viabilidade celular acima dos 80% em todos os ICCs.