17 resultados para basement deformation
Resumo:
This paper is a summary of the results of the authors recent researches about the Western Iberian continental margin. During the Mesozoic, the margin is affected by two consecutive extensional phases interpreted as the result from two episodes of rifting in the Atlantic. Then during Cenozoic, subsidence was interrupted by compression and related deformation, specially during Eocene time. Ante-mesozoic basement controls the structural and sedimentary evolution of the margin.
Resumo:
Geociências, Museu Nac. Hist. Nat. Univ. Lisboa, nº 2, 35-84
Resumo:
Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina
Resumo:
The evolution of the Lusitanian Basin, localized on the western Iberian margin, is closely associated with the first opening phases of the North Atlantic. It persisted from the Late Triassic to the Early Cretaceous, more precisely until the end of the Early Aptian, and its evolution was conditioned by inherited structures from the variscan basement. The part played by the faults that establish its boundaries, as regards the geometric and kinematic evolution and the organization of the sedimentary bodies, is discussed here, as well as with respect to important faults transversal to the Basin. A basin evolution model is proposed consisting of four rifting episodes which show: i) periods of symmetrical (horst and graben organization) and asymmetrical (half graben organization) geometric evolution; ii) diachronous fracturing; iii) rotation of the main extensional direction; iv) rooting in the variscan basement of the main faults of the basin (predominantly thick skinned style). The analysis and regional comparison, particularly with the Algarve Basin, of the time intervals represented by important basin scale hiatuses near to the renovation of the rifting episodes, have led to assume the occurrence of early tectonic inversions (Callovian–Oxfordian and Tithonian–Berriasian). The latter, however, had a subsequent evolution distinct from the first: there is no subsidence renovation, which is discussed here, and it is related to a magmatic event. Although the Lusitanian Basin is located on a rift margin which is considered non-volcanic, the three magmatic cycles as defined by many authors, particularly the second (approx. 130 to 110 My ?), performed a fundamental part in the mobilization of the Hettangian evaporites, resulting in the main diapiric events of the Lusitanian Basin. The manner and time in which the basin definitely ends its evolution (Early Aptian) is discussed here. Comparisons are established with other west Iberian margin basins and with Newfoundland basins. A model of oceanization of this area of the North Atlantic is also presented, consisting of two events separated by approximately 10 My, and of distinct areas separated by the Nazaré fault. The elaboration of this synthesis was based on: - information contained in previously published papers (1990 – 2000); - field-work carried out over the last years, the results of which have not yet been published; - information gathered from the reinterpretation of geological mapping and geophysical (seismic and well logs) elements, and from generic literature concerning the Mesozoic of the west iberian margin.
Resumo:
The Upper Jurassic evolution of the Lusitanian Basin is shown to be linked to the rifting phase which preceded the separation of Iberia and the Grand Banks. Structural controls on sedimentation include both NNE-SSW trending faults in the Hercynian basement, and contemporaneous movement of salt diapirs. At the beginning of Upper Oxfordian times, the entire basin had been levelled to within a few metres of sea level, so that the freshwater algal marsh and marginal marine facies of the Cabaços and Vale Verde Beds rest on Triassic to Callovian strata. In the latter part of the Upper Oxfordian. carbonate sedimentation continued, with fluctuating salinity lagoons in the north (Pholodomya protei Beds) separated from shallow open marine carbonates in the south (Montejunto Beds) by the Caldas da Rainha diapir-barrier island complex. The commencement of rifting is recorded in the Kimmeridgian by the sudden influx of terrigenous clastics (developed in both fluviatile and deltaic/submarine fan environments) and accelerated depositional rates in excess of 10cm/10 k.yrs in association with contemporaneous faulting along the SE margin of the Arruda sub-basin. The Caldas-Santa Cruz chain of diapiric structures continued to influence the distribution of carbonate and clastic sediments. In the Portlandian, a simpler facies pattern occurs, with fluviatile clastics interfingering to the south with shallow low energy carbonates.
Resumo:
The structural and sedimentary evolution of the portuguese continental margin South of Setúbal Canyon is outlined from the study of many seismic reflection profiles and rocks samples. During Triassic and Early Liassic time, a distension affects the Algarve margin that belongs to the Mesogean area. Off Baixo Alentejo rifting phases at Late Jurassic and Early Cretaceous times induced opening or widening of the adjacent part of the Atlantic ocean. Alpine orogeny is inferred to explain the Eocene and Miocene deformation of the margin specially along the main NE-SW fractures.
Resumo:
New elements about the stratigraphy of the Serra de Candeeiros Dogger and Lower «Lusitanian» are presented. The Lower Aalenian was recognized for the first time. Bathonian (more than 50 metres thick) is dated on brachiopods and foraminifera. It corresponds to a series of massive micritic, biodetritical, coral-reef, chaetetid, bryozoa and oolitic-limestones. Callovian (120 m) begins by whitish or yellowish limestones with ammonites and brachiopods of the Gracilis zone. It is followed by regressive limestone sequences ending with thick oncolitic layers. The «Lusitanian» base is formed by greyish lagoon brackish limestones; it lies unconformably on the Dogger, with or without angular and/or cartographic unconformity. This radical facies change is related to tectonic deformation of several blocks between the Nazaré and Tagus faults during Oxfordian times.
Resumo:
N.º4, p.263-267
Resumo:
The palynological study of sediments from lower levels of Lousã basin (Lomba do Alveite Arkoses). is presented. The palynological association includes several species of Appendicisporites and Cicatricosisporites, Costatoperforosporites sp., Ischyosporites teixeirae, Pattelasporites tavaredensis, Echinatisporis sp., Spheripollenites perinatus, Tricolpopollenites sp. and Retitricolpites maximus. The presence of the last two forms, and the absence of Normapolles, suggest an ante-Cenomanian, most probably Albian age for the assemblage. From these results, the begining of the infilling of the Lousã basin, is, at least in part, synchronous with the deposition of the «Grés Grosseiro Inferior» from the Occidental portuguese Basin. The presence of Lower Cretaceous sediments directly overlying the Paleozoic basement, hence outside of the Occidental Portuguese Basin,is shown for the first time.
Resumo:
Cabatuquila conglomerate ferricrete (Malanje Province, located North Central Angola) corresponds to a thick (1O-15m) and hardcornice at the top of "Baixa de Cassanje" escarpment. "Baixa de Cassanje" is a large graben part of South Congo basin. Cabatuquila conglomerate ferricrete seems to correspond to a Plio-Pleistocene morphology which has already disappeared. Laterization dynamics and ferricrete formation processes took place on the Tertiary surface, before being tilted to the Congo Basin. Materials submitted to these processes are mainly alluvial deposits from a pre-Cuanza drainage system. This drainage system flowed to the North before being captured to the Atlantic, as a consequence of the movement which deformed the Tertiary surface during the Pleistocene. The erosion dynamics, which created the Cassanje depression, has occurred after the late Tertiary surface deformation. That dynamics might be related to the Cuango drainage system, which was reorganized after that deformation.
Resumo:
The study of the tectonic strutures affecting the mesozoic and cenozoic deposits of Algarve's basin allows us to recognize the following phases of the Alpine orogeny: Jurassic (Upper Triassic at least)-Lower Cretaceous N-S distension; N-S compression during the setting-up of the Monchique syenite dome at the uppermost Cretaceous; Paleogene compression (?) (only locally? - at the Albufeira salt dome); Lower Miocene N-S distension; Upper Burdigalian to Lower Langhian N-S and E-W distension; N-S or NNW-SSE compression after the Middle Miocene; E-W compression after the Upper Tortonian; N-S compression during the Quaternary. NE-SW fractures affecting the Paleozoic basement are related with the first distension phases. The mesozoic N-S distension are the main cause of the two E-W flexures so far recognized. A tectonic inversion event did occur after the setting up of the Monchique syenite. If, the Lower Cretaceous Lower Miocene Albufeira's unconformity, is a local effect of halokinesis then, the true tectonic inversion of the Algarve basin, did occur in the Middle Miocene. These events correlate well with those knewn at Southern Spain and Morocco.
Resumo:
Proceedings of the 1" R.C.A.N.S. Congress, Lisboa, October 1992
Resumo:
The extensional process affecting Iberia during the Triassic and Jurassic times change from the end of the Cretaceous and, throughout the Palaeocene, the displacement between the African and European plates was clearly convergent and part of the future Internal Zone of the Betic Cordillera was affected. To the west, the Atlantic continued to open as a passive margin and, to the north, no significant deformation occurred. During the Eocene, the entire Iberian plate was subjected to compression. which caused major deformations in the Pyrenees and also in the Alpujarride and Nevado-Filabride, Internal Betic, complexes. In the Oligocene continued this situation, but in addition, the new extensional process ocurring in the western Mediterranean area, together with the constant eastward drift of Iberia due to Atlantic opening, compressed the eastern sector of Iberia, giving rise to the structuring of the Iberian Cordillera. The Neogene was the time when the Betic Cordillera reached its fundamental features with the westward displacement of the Betic-Rif Internal Zone, expelled by the progressive opening of the Algerian Basin, opening prolonged till the Alboran Sea. From the late Miocene onwards, all Iberia was affected by a N-S to NNW-SSE compression, combined in many points by a near perpendicular extension. Specially in eastern and southern Iberia a radial extension superposed these compression and extension.
Resumo:
Erosion surfaces are the main geomorphological features of the Hesperian Massif. However, three other physiographic elements define the present state of the landscape. Such are big mountain blocks with polygonal borders building at great scale mountain chains, some more modest ridges following hercynian structural trends, and finally the strong incision of the fluvial net. On the other hand, paleoalterations and associated sediments are the only available ways for relief correlation and interpretation. It consists of a triple relationship giving good results when the regional stratigraphy is well known. Tectonic massifs, differential relief sand incisions are originated by geotectonic alpine disturbances during the Tertiary. The three events are consecutive in time with overlapping lapses which the prior and following element: differencial reliefs as a mesozoic heritage occur first, afterwards morphostructural blocks responding directly to the alpine deformation, and finally the fluvial incision as a delayed answer to the preceding morphostructural changes. The relationship relief sedimentation confirms widely this idea, since an association exists between a siderolitic Cretaceous-lower Paleogene and the differential reliefs, between arkoses from the upper Paleogene and the tectonic morphostructural blocks and between the Neogene Series Ocres and the terraces.
Resumo:
This paper describes the palaeoweathering, cementation, clay minerals association and other closely related characteristics of central Portugal allostratigraphic Tertiary units (SLD's), that can be used for palaeoclimatic interpretation and palaeoenvironmental reconstruction. Lateral and vertical changes in palaeosols are of value for improving our understanding of the autocyclic and allocyclic controls on sediment acumulation in an alluvial basin, but they can also have stratigraphic importance. In some cases it is concluded that the geomorphological setting may have been more decisive than climatic conditions to the production of the palaeoweathering. During late Palaeogene (SLD7-8), surface and near-surface silicification were developed on tectonically stable land surfaces of minimal local relief under a semi-arid climate; groundwater flow was responsible for some eodiagenesis calcareous accumulations, with the neoformation of palygorskite. Conditions during the Miocene (SLD9-11) were favourable for the smectization of the metamorphic basement and arenization of granites. Intense rubefaction associated with basement conversion into clay (illite and kaolinite), is ascribed to internal drainage during late Messinian-Zanclean (SLD12). During Piacenzian (SLD13) intense kaolinization and hydromorphism are typical, reflecting a more humid and hot temperate climate and important Atlantic fluvial drainage. Later on (Gelasian-early Pleistocene ?; SLD14). more cold and dry conditicns are interpreted, at the beginning of the fluvial incision sage. Silica cementation is identified in the upper Eocence-Oligocene ? (SLD18; the major period of silicification), middle to upper Miocene (SLD10)and upper Tortonian-Messinian (SLD11); these occurrences are compatible with either arid or semi-arid conditions and the establishment of a flat landscape upon which a silcrete was developed.