19 resultados para Photonic switch
Resumo:
Cryogen-free superconducting magnet systems have become popular during the last two decades for the simple reason that with the use of liquid helium is rather cumbersome and is a scarce resource. Some available CFMS uses a mechanical cryocooler as cold source of the superconductor magnet. However, the cooling of the sample holder is still made through an open circuit of helium. A thermal management of a completely cryogen-free system is possible to be implemented by using a controlled gas gap heat switch (GGHS) between the cryocooler and the variable temperature insert (VTI). This way it would eliminate the helium open circuit. Heat switches are devices that allow to toggle between two distinct thermal states (ON and OFF state). Several cryogenic applications need good thermal contact and a good thermal insulation at different stages of operation. A versatile GGHS was designed and built with a 100 mm gap and tested with helium as exchange gas. An analytic thermal model was developed and a good agreement with the experimental data was obtained. The device was tested on a crycooler at 4 to 80 K ranges. A 285 mW/K thermal conductance was measured at ON state and 0.09 mW/K at OFF. 3000 ON/OFF thermal conductance ratio was obtained at 4 K with helium.
Resumo:
25th International Cryogenic Engineering Conference and the International Cryogenic Materials Conference in 2014, ICEC 25–ICMC 2014
Resumo:
The amorphous silicon photo-sensor studied in this thesis, is a double pin structure (p(a-SiC:H)-i’(a-SiC:H)-n(a-SiC:H)-p(a-SiC:H)-i(a-Si:H)-n(a-Si:H)) sandwiched between two transparent contacts deposited over transparent glass thus with the possibility of illumination on both sides, responding to wave-lengths from the ultra-violet, visible to the near infrared range. The frontal il-lumination surface, glass side, is used for light signal inputs. Both surfaces are used for optical bias, which changes the dynamic characteristics of the photo-sensor resulting in different outputs for the same input. Experimental studies were made with the photo-sensor to evaluate its applicability in multiplexing and demultiplexing several data communication channels. The digital light sig-nal was defined to implement simple logical operations like the NOT, AND, OR, and complex like the XOR, MAJ, full-adder and memory effect. A pro-grammable pattern emission system was built and also those for the validation and recovery of the obtained signals. This photo-sensor has applications in op-tical communications with several wavelengths, as a wavelength detector and to execute directly logical operations over digital light input signals.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
IEEE International Symposium on Circuits and Systems, pp. 2258 – 2261, Seattle, EUA
Resumo:
Dissertation presented to obtain the PhD degree in Electrical and Computer Engineering - Electronics
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
ABSTRACT - It is the purpose of the present thesis to emphasize, through a series of examples, the need and value of appropriate pre-analysis of the impact of health care regulation. Specifically, the thesis presents three papers on the theme of regulation in different aspects of health care provision and financing. The first two consist of economic analyses of the impact of health care regulation and the third comprises the creation of an instrument for supporting economic analysis of health care regulation, namely in the field of evaluation of health care programs. The first paper develops a model of health plan competition and pricing in order to understand the dynamics of health plan entry and exit in the presence of switching costs and alternative health premium payment systems. We build an explicit model of death spirals, in which profitmaximizing competing health plans find it optimal to adopt a pattern of increasing relative prices culminating in health plan exit. We find the steady-state numerical solution for the price sequence and the plan’s optimal length of life through simulation and do some comparative statics. This allows us to show that using risk adjusted premiums and imposing price floors are effective at reducing death spirals and switching costs, while having employees pay a fixed share of the premium enhances death spirals and increases switching costs. Price regulation of pharmaceuticals is one of the cost control measures adopted by the Portuguese government, as in many European countries. When such regulation decreases the products’ real price over time, it may create an incentive for product turnover. Using panel data for the period of 1997 through 2003 on drug packages sold in Portuguese pharmacies, the second paper addresses the question of whether price control policies create an incentive for product withdrawal. Our work builds the product survival literature by accounting for unobservable product characteristics and heterogeneity among consumers when constructing quality, price control and competition indexes. These indexes are then used as covariates in a Cox proportional hazard model. We find that, indeed, price control measures increase the probability of exit, and that such effect is not verified in OTC market where no such price regulation measures exist. We also find quality to have a significant positive impact on product survival. In the third paper, we develop a microsimulation discrete events model (MSDEM) for costeffectiveness analysis of Human Immunodeficiency Virus treatment, simulating individual paths from antiretroviral therapy (ART) initiation to death. Four driving forces determine the course of events: CD4+ cell count, viral load resistance and adherence. A novel feature of the model with respect to the previous MSDEMs is that distributions of time to event depend on individuals’ characteristics and past history. Time to event was modeled using parametric survival analysis. Events modeled include: viral suppression, regimen switch due virological failure, regimen switch due to other reasons, resistance development, hospitalization, AIDS events, and death. Disease progression is structured according to therapy lines and the model is parameterized with cohort Portuguese observational data. An application of the model is presented comparing the cost-effectiveness ART initiation with two nucleoside analogue reverse transcriptase inhibitors (NRTI) plus one non-nucleoside reverse transcriptase inhibitor(NNRTI) to two NRTI plus boosted protease inhibitor (PI/r) in HIV- 1 infected individuals. We find 2NRTI+NNRTI to be a dominant strategy. Results predicted by the model reproduce those of the data used for parameterization and are in line with those published in the literature.
Resumo:
Dissertation to obtain the Doctoral degree in Physics Engineering
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Chlamydia trachomatis has a unique obligate intracellular developmental cycle that ends by the lysis of the cell and/or the extrusion of the bacteria in order to allow for re-infections. While Chlamydia trachomatis infections are often asymptomatic the diagnosis of Chlamydia trachomatis is usually late, occurring after manifestation of persistency. Investigations on the consequences of long-term infections and the molecular mechanisms behind it will reveal light to what extent bacteria can modulate host cell function and what the ultimate fate of host cells after clearance of an infection is. Such studies on the host cell fate could be greatly facilitated if the infected cells become permanently marked during and after the infection. Therefore, this project intends to develop a new genetic tool that would allow permanently labeling of Chlamydia trachomatis host cells. The plan was to generate a Chlamydia trachomatis strain that encodes a recombinant CRE recombinase, fused to a secretory effector function of the Chlamydia type 3 secretion system (T3SS). Upon translocation into the host cell, this recombinant CRE enzyme could then, owing to its site-specific recombination function, switch a reporter gene contained in the host cell genome. To this end, the reporter line carried a membrane-tagged tdTomato (mT) gene flanked by two LoxP sequences followed by a GFP gene. The translocation of the recombinant CRE recombinase into this cell line was designed to trigger the recombination of the LoxP sites whereby the cells would turn from red fluorescence to green as an irreversible label of the infected cells. Successful execution of this mechanism would allow to draw a direct link between Chlamydia trachomatis infection and the subsequent fate of the infected cell.
Resumo:
A thermal Energy Storage Unit (ESU) could be used to attenuate inherent temperature fluctuations of a cold finger, either from a cryocooler working or due to sudden income heat bursts. An ESU directly coupled to the cold source acts as a thermal buffer temporarily increasing its cooling capacity and providing a better thermal stability of the cold finger (“Power Booster mode”). The energy storage units presented here use an enthalpy reservoir based on the high latent heat of the liquid-vapour transition of neon in the temperature range 38 - 44 K to store up to 900 J, and that uses a 6 liters expansion volume at RT in order to work as a closed system. Experimental results in the power booster mode will be described: in this case, the liquid neon cell was directly coupled to the cold finger of the working cryocooler, its volume (12 cm3) allowing it to store 450 J at around 40 K. 10 W heat bursts were applied, leading to liquid evaporation, with quite reduced temperature changes. The liquid neon reservoir can also work as a temporary cold source to be used after stopping the cryocooler, allowing for a vibration-free environment. In this case the enthalpy reservoir implemented (24 cm3) was linked to the cryocooler cold finger through a gas gap heat switch for thermal coupling/decoupling of the cold finger. We will show that, by controlling the enthalpy reservoir’s pressure, 900 J can be stored at a constant temperature of 40 K as in a triple-point ESU.
Resumo:
Cryocoolers have been progressively replacing the use of the stored cryogens in cryogenic chains used for detector cooling, thanks to their higher and higher reliability. However, the mechanical vibrations, the electromagnetic interferences and the temperature fluctuations inherent to their functioning could reduce the sensor’s sensitivity. In order to minimize this problem, compact thermal energy storage units (ESU) are studied, devices able to store thermal energy without significant temperature increase. These devices can be used as a temporary cold source making it possible to turn the cryocooler OFF providing a proper environment for the sensor. A heat switch is responsible for the thermal decoupling of the ESU from the cryocooler’s temperature that increases when turned OFF. In this work, several prototypes working around 40 K were designed, built and characterized. They consist in a low temperature cell that contains the liquid neon connected to an expansion volume at room temperature for gas storage during the liquid evaporation phase. To turn this system insensitive to the gravity direction, the liquid is retained in the low temperature cell by capillary effect in a porous material. Thanks to pressure regulation of the liquid neon bath, 900 J were stored at 40K. The higher latent heat of the liquid and the inexistence of triple point transitions at 40 K turn the pressure control during the evaporation a versatile and compact alternative to an ESU working at the triple point transitions. A quite compact second prototype ESU directly connected to the cryocooler cold finger was tested as a temperature stabilizer. This device was able to stabilize the cryocooler temperature ((≈ 40K ±1 K) despite sudden heat bursts corresponding to twice the cooling power of the cryocooler. This thesis describes the construction of these devices as well as the tests performed. It is also shown that the thermal model developed to predict the thermal behaviour of these devices, implemented as a software,describes quite well the experimental results. Solutions to improve these devices are also proposed.
Resumo:
Cryocoolers have been progressively replacing the use of the stored cryogens in cryogenic chains used for detector cooling, thanks to their higher and higher reliability. However, the mechanical vibrations, the electromagnetic interferences and the temperature fluctuations inherent to their functioning could reduce the sensor’s sensitivity. In order to minimize this problem, compact thermal energy storage units (ESU) are studied, devices able to store thermal energy without significant temperature increase. These devices can be used as a temporary cold source making it possible to turn the cryocooler OFF providing a proper environment for the sensor. A heat switch is responsible for the thermal decoupling of the ESU from the cryocooler’s temperature that increases when turned OFF. In this work, several prototypes working around 40 K were designed, built and characterized. They consist in a low temperature cell that contains the liquid neon connected to an expansion volume at room temperature for gas storage during the liquid evaporation phase. To turn this system insensitive to the gravity direction, the liquid is retained in the low temperature cell by capillary effect in a porous material. Thanks to pressure regulation of the liquid neon bath, 900 J were stored at 40K. The higher latent heat of the liquid and the inexistence of triple point transitions at 40 K turn the pressure control during the evaporation a versatile and compact alternative to an ESU working at the triple point transitions. A quite compact second prototype ESU directly connected to the cryocooler cold finger was tested as a temperature stabilizer. This device was able to stabilize the cryocooler temperature ((≈ 40K ±1 K) despite sudden heat bursts corresponding to twice the cooling power of the cryocooler. This thesis describes the construction of these devices as well as the tests performed. It is also shown that the thermal model developed to predict the thermal behaviour of these devices,implemented as a software, describes quite well the experimental results. Solutions to improve these devices are also proposed.
Resumo:
This work project is about developing a marketing plan for a new gin brand in Germany. It is based on consumer and market research, including Portugal as a trend market for the qualitative research. For the undertaking it is seen as fundamental to understand the industry as well as the consumer needs, attitudes and preferences. Furthermore, it is important to consider the estimation of opinion leaders and trendsetters in the industry. In this context it turned out that barkeepers have a key-influencing role for the stimulation of demand. Based on the insights from this research as well as on the gained market knowledge, the marketing plan was developed. The goal is to convince other brand users to switch brands.