32 resultados para Middle west


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Upper Cenomanian and Lower Turonian ammonite assemblages from the onshore sectors of the West Portuguese Margin are reviewed after new studies on the type section of Figueira da Foz, and correlative sections of Baixo Mondego. The faunal succession shows a strong contribution of vascoceratids and other ammonites with North African and Tethyan affinities. Euomphaloceras septemseriatum (Cragin, 1893), Kamerunoceras douvillei (Pervinquere, 1907), Fagesia catinus (Mantell, 1822), Neoptychites cephalotus (Courtiller, 1860), and Thomasites rollandi (Thomas & Peron, 1889) are for the first time mentioned to Portugal. The Upper Cenomanian is recognised after a set of 3 assemblage zones: Neolobites vibrayeanus z., Euomphaloceras septemseriatum z ., and Pseudaspidoceras pseudonodosoides z. The carbonate succession shows an important unconformity across the Cenomanian-Turonian boundary, associated to subaerial exposure, and to the development of a palaeokarst over Upper Cenomanian units. The first Lower Turonian carbonates are yielded a single but diverse ammonite assemblage of middle Lower Turonian age (Thomasites rollandi z.). This biozone was previously recognised in Central Tunisia by G. Chancellor et al. (1994).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among the Pleistocene and Holocene units recorded near the marine cliffs of Cape Mondego (Figueira da Foz, West Central Portugal) stands out the Farol Deposit (Depósito do Farol), at an altitude of ±95 m above present sea level. It is a marine terrace with three exposures of interstratified conglomerates and sands, overlapped by calclititic-fanglomerates. This sedimentary setting indicates that deposition took place in a seashore environment influenced by the proximity of a marine palaeocliff. The deposit has an interesting subfossil fauna with abraded and fragmented shells of Nucella lapillus (LINNÉ, 1758), Patella vulgata (LINNÉ, 1758) and Littorina littorea (LINNÉ, 1758), suggesting the existence of an environment with colder surface seawater, when compared with the present day Portuguese seashore. These specimens belonged to marine communities adapted to live in intertidal rocky platforms, which have been exposed to the cyclic action of waves and tidal flows, on the swash and surf zones. The Farol Deposit can be related to an Early/Middle Pleistocene “cold-water” episode, earlier to the Isotopic Stages 7 and 11. This episode occurred before the deposition of the units Quiaios Sands (Areias de Quiaios) and Cantanhede Sands (Areias de Cantanhede) (Sicilian?), but later than the Arazede Sands (Areias de Arazede) and Marinha das Ondas Sands (Areias de Marinha das Ondas) (Early Pleistocene).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The former occurrence of the North Atlantic right whale Eubalaena glacialis on the Portuguese coast may be inferred from the historical range of that species in Europe and in NW Africa. It is generally accepted that it was the main prey of coastal whaling in the Middle Ages and in the pre-modern period, but this assumption still needs firming up based on biological and archaeological evidence. We describe the skeletal remains of right whales excavated at Peniche in 2001-2002, in association with archaeological artefacts. The whale bones were covered by sandy sediments on the old seashore and they have been tentatively dated around the 16th to 17th centuries. This study contributes material evidence to the former occurrence of E. glacialis in Portugal (West Iberia). Some whale bones show unequivocal man-made scars. These are associated to wounds from instruments with a sharp-cutting blade. This evidence for past human interaction may suggest that whaling for that species was active at Peniche around the early 17th century.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Algarve Province, Southern Portugal, corresponds in part to a meso-cenozoic basin running along the coast from Cabo S. Vicente to beyond Spanish border. Structurally it is a big monocline plunging southwards much deformed mainly by two East-West longitudinal flexures. Lithostratigraphical and chronostratigraphical studies dealt specially with Jurassic formations. This and the geological mapping of the post-Hercynian sedimentary formations allow us to define the following units: Triassic-Lower Liassic Arenitos de Silves (Silves sandstones sensu P. Choffat, pro parte) - At their base the Silves sandstones (0-150m) are represented mainly by cross-bedded red sandstones. This unit is Upper Triassic (Keuper) in age, on the evidence of some Brachiopoda. Complexo margo-carbonatado de Silves (Silves marl-limestone complex=Silves sandstones sensu P. Choffat, pro parte) (80-200m) overlies the preceding, it may be reported to the Upper Triassic-Hettangian. It consists of a thick pelite-marl-dolomite-limestone series with many intercalations of greenstones. Since no fossils were found it is not possible to conclude whether it is still Hettangian or if it does correspond, in the whole or in part, already to the Sinemurian. Liassic Dolomitos e calcários dolomíticos de Espiche (Espiche dolomite-rocks and dolomitic-limestones) - The usually massive and finely crystalline or saccharoidal dolomites and dolomitic-limestones are the toughest strata of the Algarve margin giving rise to several hills. Its thickness attains in certain points 60 metres at least. Based on geometry and on lithological similarities with the carbonated complex of the northern basin of Tagus river (Peniche, São Pedro de Muel, Quiaios), this formation can be accepted as Sinemurian in age. As it happens with the carbonated complex, here also the first dolomite beds are non-isochronal throughout the region; upper time-limit of the dolomitic facies is either Lower Carixian, Lower Toarcian or even Lower Dogger. The dolomitization is secondary but not much later than sedimentation. However, between Cabo S. Vicente-Vila do Bispo there is evidence of an even later secondary dolomitization related to the regional fault complex. Calcário dolomítico com nódulos de silex da praia de Belixe (Belixe beach dolomitic-limestone with silex nodules) (50-55m) - Ascribed to Lower or Middle Carixian on the basis of Platypleuroceras sp., Metaderoceras sp. nov. and M. gr. Venarense. Calcário cristalino compacto com Protogrammoceras, Fuciniceras e ? Argutarpites de Belixe (Belixe compact crystalline limestone with Protogrammoceras, Fuciniceras and ? Argutarpites) (30m) - Ascribed to Lower Domerian. Middle and Upper Domerian are indicated but by a single specimen of ? Argutarpites. Calcários margosos e margas com Dactylioceras semicelatum e Harpoceratídeos de Armação Nova (Armação Nova marly limestones and marls with D. semicelatum and Harpoceratidae) (25m) -Ascribed to Lower Toarcian. Middle and Upper Toarcian formations are not known in the Algarve. Dogger Calcários oolíticos, c. corálicos, c. pisolíticos, c. calciclásticos, c. dolomíticos e dolomitos de Almadena (Almadena oolitic-limestones, coral-reef-limestones, pisolite-limestones, limeclastic-limestones, dolomitic-limestones and dolomite-rocks) (more than 50 metres), with lagoonal facies. Ascribed to Aalenian-Bathonian-? Callovian. Margas acinzentadas e calcários detríticos com Zoophycos da praia de Mareta (Mareta beach greyish marls and detritical limestones with Zoophycos) (40m) - Pelagic transreef facies with Upper Bajocian and Bathonian ammonites. Calcários margosos e margas da praia de Mareta (Mareta beach pelagic marly-limestones and marls) (110m) - Ascribed to the Callovian on its ammonites. Malm Near Cabo S. Vicente and Sagres the first Upper Jurassic level consists of a yellowish-brown nodular, compact, locally phosphated and ferruginous, sometimes conglomeratic, marly limestone (0,35-1,50m) containing a rich macrofauna, which includes: 1) Callovian forms unknown at Lower Oxfordian; 2) Upper Callovian forms that still survived in Lower and Middle Oxfordian; 3) Lower Oxfordian forms (Mariae and Cordatum Zones); 4) Lower and Middle Oxfordian forms (Mariae to Plicatilis Zone); 5) Middle Oxfordian forms (plicatilis Zone), and some ones appearing in Middle Oxfordian. This condensed deposit is therefore dated from Middle Oxfordian (Plicatilis Zone). The other Upper Jurassic lithostratigraphical units were also mapped but their detailed study is not presented in this work. Correlations between lithostratigraphical and chronostratigraphical scales from P. Choffat, J. Pratsch, C. Palain and from the author are stated. Further correlations are attempted between zonc scales of Carixian-Lower Toarcian and Upper Bajocian-Middle Oxfordian of France, Spain (Asturias, Iberian and Betic Chains), Argel (Orania) and Portugal (northern Tagus basin and Algarve). The study of pyritous fossil assemblages common in Upper Bathonian-Lower Callovian marly levels of the praia da Mareta seems to suggest that these sediments were deposited in a bay or in an almost closed coastal re-entrance virtually without deep water circulation. Although such conditions may occur at any depth one may suppose that these ones actually correspond to an infralittoral neritic environment. The thaphocoenosis collected there are almost entirely composed of nektonic (ammonites, Belemnites) and planktonic (Bositra) faunas. The sedentary (crinoids, brachiopods) or free (sea-urchins, gastropods) epibenthonic forms are very scarce; endobenthonic forms are not known. The palaeontological study of all Nautiloids and Ammonoids of the Liassic and Dogger is presented (except Kosmoceratidae and Perisphinctaceae). Among the thirty one taxa dealt with, one is new (Metaderoceras sp. nov.) and the great majority of the others has been identified for the first time in Algarve. Some others have never been reported before in Portuguese formations. The evolution, during Jurassic times, of the sedimentary basins of the Portuguese plate margin is described. The absence of Cephalopods in the very extensive marly and dolomitic limestones, partly marine, suggests that, during Lower Liassic, palaeogeography underwent no great changes. Dolomitic-limestone with silex nodules from Cabo S. Vicente contain the first ammonites recorded at the base of the Middle Liassic. This facies, although very common in Tethys, is unknown north of the Tagus. The faunal assemblage has a mediterranean to submediterranean character. Comparisons between faunal assemblage" from Algarve with the ones known north of the Tagus show that communications between Boreal Europe and Tethys, virtually non-existent during Lower and Middle Carixian, became very easy during Lower Domerian. In earlier Pliensbachian times two distinct seas were adjacent to the Iberian plate. One, an epicontinental sea with a tethyan fauna, extended southwards from the Meseta margin. Another, was a boreal sea; during its transgressive episodes boreal faunas attained into the basin north of the Tagus. During Middle Carixian and Lower Domerian, owing to simultaneous transgressions, these two seas joined together allowing faunal exchanges along the epicontinental areas which limited the emerging hercynian chains belts. During Liassic, the Algarve belonged undoubtedly to the tethyan submediterranean province. The area north of the Tagus, on the contrary, was a complex realm where subboreal and tethyan affinities alternatively prevailed. In the Algarve the first Middle Jurassic deposits do frequently show lateral thickness reductions as well as unconformities contemporaneous with other generalized disturbances on the sedimentation processes in other parts of Europe. By this time, near Sagres, a barrier reef developed separating lagoonal or ante-reef facies from the transreef pelagic zone. The presence of tethyan fauna, the abundance of Phylloceratidae and the absence of boreal forms allow us to consider the Algarve basin as a submediterranean province. The presence of Callovian pelagic fossiliferous formations in the Loulé area shows that during Middle Jurassic the marl-limestone transreef sedimentation was not confined to the western Algarve. They would extend eastwards where they only can be seen in the core of some anticlines. This is due to the progressive sinking of the meso-cenozoic formations as we proceed towards the South of the Sagres-Algoz-Querença flexure. In the whole of the Peninsule, and as for the Middle Callovian, an important regression can be clearly recognized on the evidence of an erosion surface which strikes obliquely the Middle and Upper Callovian strata. The geographic boundaries of the different faunal provinces are not changed by the presence of many Kosmoceratidae in the phosphate nodules since they are but a minority in comparison with the tethyan forms. An abstract model can be constructed showing that in Western Europe the Kosmoceratidae may have migrated South and westwards through a channel of the sea that linked Paris basin to Poitou and Aquitaine. By migrating between the Iberian meseta and the Armorican massif this fauna reached northern Tagus basin at the beginning of Upper Callovian (Athleta Zone); this south and southwest bound migration would have proceeded, allowing such forms to reach Algarve basin only in latest Callovian times (Lamberti Zone). This migration means that during Middle Jurassic a widely spread North Atlantic sea would exist, flooding the western part of Portugal up to the Poitou.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The facies distribution along the Jurassic stages in an already well established stratigraphic frame is defined for the three portuguese basins: North of Tagus, Santiago de Cacém and Algarve. The deposits are organized in two sedimentary cycles. The first one from the Liassic to Calovian shows, in the Tagus Basin, a transgression from NW which did not surpass the Meseta present limits. The iniatilly brackish deposits only changed to marine by the end of Lotharingian. The sedimentation, mainly marly during the Liassic became more calcareous since the Aalenian. During the Dogger the basin differentiated into platform deposits towards East and South and open sea zone towards West. This zone underwent a progressive reduction and, during the Callovian, two small basins were individualized: Cabo Mondego basin in the North and Serra de El-Rei-Montejunto in the South. It is from the latter that the second sedimentary cycle (Middle Oxfordian-Portlandian) developed with open sea deposits along the Sintra–Torres Vedras axis surrounded by platform and litoral brackish formations. During the first sedimentary cycle only litoral platform deposits are known in Santiago de Cacém and Algarve basins. During the second sedimentary cycle temporary sea open deposits are known in Santiago de Cacém and Central Algarve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The littoral and the «barrocal» of the Algarve correspond in part to a meso-cenozoic sedimentary basin with a deeping south monocline structure, cut by North-South faults and by two East-West longitudinal flexures. The lithostratigraphic and chronostratigraphic study of the Jurassic formations, undertaken during the last years, allow a better knowledge of the paleogeographic and paleobiogeographic evolution of these formations and particularly of the Callovian-Kimmeridgian. Lower Callovian facies, being similar from Sagres in the West to beyond Tavira, show the uniformity of the sedimentary conditions. Since Middle Callovian, the beginning of the regressive cycle is responsible for a major unconformity between Dogger and Malm. During the Lower Oxfordian a new sedimentary cycle begins with a transgression afecting the region south of the Albufeira-São Brás de Alportel-Tavira line thus originating a gulf centered in the Loulé area which rapidly diminishes since the Lower Kimmeridgian. The faunistic affinities are always tipically tethyan although some classic boreal fauna exist, in contrast with the Northern Tagus basin (where affinities are sub-boreal during the Callovian).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beaver only had been found in Portugal in a Chalcolithic locality, the Vila Nova de S. Pedro castrum. It has now been identified in the Upper Paleolithic (Solutrean) from Gruta do Caldeirão, near Tomar. The species has been found recently at «Gruta do Almonda»; 4 teeth were collected in bed C, older than a Solutrean sequence (see Anexo for details). The species seems to have been rare, as it was also the case with portuguese Miocene Castoridae Enroxenomys minutus and Chalicomys jaegeri. If account is taken of the presence in the Middle Ages until Castille of words meaning beaver (relared to the popular latin Fiber/Biber), it is obvious that these animais still existed then. Such nouns were largely predominant over rhe rather erudite latin (greek deríved) words as Castor,-óris and derived ones, as it could be expected. This allowed us to recognize that veiro should be the corresponding word with Fiber affinities in archaic portuguese. It was previously supposed to mean only expensive furs then imported into Portugal. Indeed it was also a zoonym. Anywày, beaver should be scarce by XIIIth century since it is not included in the quite detailed price list imposed by the «Lei da Almotaçaria» from December 26, 1253 (see Quadro II). Toponyms in veiro and derived words (fig. 2; Quadro III) (plural, feminines, diminutives, inhabited places) give a resrrictive view of rhe Middle Age distribution. Some of them are certainly older than Portugal itself (firsr half of XIlth cenrury); others existed by the XIVth century bur were probably older. Some rare toponyms seem to be derived from the erudite latin Castor,-óris. Nothing suggests that these words were still in use as zoonyms during the Middle Ages. All toponyms are located in regions near rivers and other freshwaters ecologically suitable for beavers, so we can approximately retrace its former, Middle Age disrribution in Portugal (fig. 2; Quadro III). Most of them are locared in the Center-West and Northwest of Portugal, with a suitable c1imate (rainfall in general over 800 mílimerers per year); the only sure geographical exception is Veiros, in Alto Alentejo province, in a region with comparable precipitations and less dry climate conditions than mosr of the territories South of rhe Tagus. There are less and less of these toponyms towards rhe South and the inner part of the country, and they are enrirely lacking in all drier regions from Trás-os-Montes, Beira, Alentejo beyond Tagus' basin, and in Algarve. Nothing suggests beavers lived there, No post-medieval toponym is known, nor any reference after middle XVth century. No such locality was at, or close by to, any frontier. Hence the hypothesis of veiro (et al.} as meaning but points where expensive furs (supposedly known as veiros in general but without c1early saying from what animal they were obrained from) is to be discarded. During the Middle Ages, beaver discriburion concerned all the main river basins from Minho to Tagus ones. Quite rarefied in rhe XIIIth, the beavers may have disappeared from Portugal during the XVth century. Ecological requiremenrs restricted their former distriburion. Vulnerability to natural causes (i.e., severe drought) and to human pressure may have accounted heavily for this species' extinction. Last (1446) reference for Portugal known to us suggests the species was by then almost extinct.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(l) The Pacific basin (Pacific area) may be regarded as moving eastwards like a double zip fastener relative to the continents and their respective plates (Pangaea area): opening in the East and closing in the West. This movement is tracked by a continuous mountain belt, the collision ages of which increase westwards. (2) The relative movements between the Pacific area and the Pangaea area in the W-EfE-W direction are generated by tidal forces (principle of hypocycloid gearing), whereby the lower mantle and the Pacific basin or area (Pacific crust = roof of the lower mantle?) rotate somewhat faster eastwards around the Earth's spin axis relative to the upper mantle/crust system with the continents and their respective plates (Pangaea area) (differential rotation). (3) These relative West to East/East to West displacements produce a perpetually existing sequence of distinct styles of opening and closing oeean basins, exemplified by the present East to West arrangement of ocean basins around the globe (Oceanic or Wilson Cycle: Rift/Red Sea style; Atlantic style; Mediterranean/Caribbean style as eastwards propagating tongue of the Pacific basin; Pacific style; Collision/Himalayas style). This sequence of ocean styles, of which the Pacific ocean is a part, moves eastwards with the lower mantle relative to the continents and the upper-mantle/crust of the Pangaea area. (4) Similarly, the collisional mountain belt extending westwards from the equator to the West of the Pacific and representing a chronological sequence of collision zones (sequential collisions) in the wake of the passing of the Pacific basin double zip fastener, may also be described as recording the history of oceans and their continental margins in the form of successive Wilson Cycles. (5) Every 200 to 250 m.y. the Pacific basin double zip fastener, the sequence of ocean styles of the Wilson Cycle and the eastwards growing collisional mountain belt in their wake complete one lap around the Earth. Two East drift lappings of 400 to 500 m.y. produce a two-lap collisional mountain belt spiral around a supercontinent in one hemisphere (North or South Pangaea). The Earth's history is subdivided into alternating North Pangaea growth/South Pangaea breakup eras and South Pangaea growth/North Pangaea breakup eras. Older North and South Pangaeas and their collisional mountain belt spirals may be reconstructed by rotating back the continents and orogenic fragments of a broken spiral (e.g. South Pangaea, Gondwana) to their previous Pangaea growth era orientations. In the resulting collisional mountain belt spiral, pieced together from orogenic segments and fragments, the collision ages have to increase successively towards the West. (6) With its current western margin orientated in a West-East direction North America must have collided during the Late Cretaceous Laramide orogeny with the northern margin of South America (Caribbean Andes) at the equator to the West of the Late Mesozoic Pacific. During post-Laramide times it must have rotated clockwise into its present orientation. The eastern margin of North America has never been attached to the western margin of North Africa but only to the western margin of Europe. (7) Due to migration eastwards of the sequence of ocean styles of the Wilson Cycle, relative to a distinct plate tectonic setting of an ocean, a continent or continental margin, a future or later evolutionary style at the Earth's surface is always depicted in a setting simultaneously developed further to the West and a past or earlier style in a setting simultaneously occurring further to the East. In consequence, ahigh probability exists that up to the Early Tertiary, Greenland (the ArabiaofSouth America?) occupied a plate tectonic setting which is comparable to the current setting of Arabia (the Greenland of Africa?). The Late Cretaceous/Early Tertiary Eureka collision zone (Eureka orogeny) at the northern margin of the Greenland Plate and on some of the Canadian Arctic Islands is comparable with the Middle to Late Tertiary Taurus-Bitlis-Zagros collision zone at the northern margin of the Arabian Plate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New Middle Pliocene ichthyofauna (2.4-2.2 Ma) from central-eastern Italy (Samoggia Torrent, Bologna) are described. These ichthyolites were found in a rather thin laminated layer that was deposited after the 2.4 Ma climatic crisis. The origin of this deposit, in which 31 taxa have been classified, is to be related to anoxic events on a regional and, probably, supraregional scale. This ichthyofaunistic association, which consists of living genera, is characterized by a clearcut predominance of mesopelagic species. The palaeoclimatic characters of these ichthyofauna indicate subtropical-type waters, while from a palaeobiogeographic point of view there is a close relationship with the present-day Atlantic-Mediterranean bioprovince. The Samoggia deposit has yielded six taxa that are absent or only occasionally present in the Mediterranean: one of these, Spratelloides gracilis, is exclusive of the Indo-Pacific bioprovince.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Revista Española de Paleontologia 19 (2), 229-242

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cretaceous Research 30 (2009) 575–586

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beaver only had been found in Portugal in a Chalcolithic locality, the Vila Nova de S. Pedro castrum. It has now been idenrified in the Upper Paleolithic (Solurrean) from Gruta do Caldeirão, near Tomar. The species has been found recently at «Gruta do Almonda»; 4 teeth were collected in bed C, older than a Solutrean sequence (see Anexo for details). The species seems to have been rare, as it was also the case with portuguese miocene Castoridae Enroxenomys minutus and Chalicomys jaegeri. If account is taken of the presence in the Middle Ages until Castille of words meaning beaver (related to the popular latin Fiber/Biber), it is obvious that these animals still existed then. Such nouns were largely predominant over the rather erudite larin (greek derived) words as Castor, -óris and derived ones, as it could be expected. This allowed us to recognize that veiro should be the corresponding word with Fiber affinities in archaic portuguese. It was previously supposed to mean only expensive furs then imported into Portugal. Indeed it was also a zoonym. Anyway, beaver should be scarce by XIIIth century since it is not included in the quite detailed price list imposed by the «Lei da Almotaçaria» from December 26, 1253 (see Quadro II). Toponyms in veiro and derived words (fig. 2; Quadro III) (plural, feminines, diminutives, inhabited places) give a restrictive view of the Middle Age distribution. Some of them are certainly older than Portugal itself (first half of XIIth century); others existed by the XIVth century but were probably older. Some rare toponyms seem to be derived from rhe erudite latin Castor, -óris. Nothing suggests that these words were still in use as zoonyms during the Middle Ages. All toponyms are located in regions near rivers and other freshwaters ecologically suitable for beavers, so wecan approximately retrace irs former, Middle Age distribution in Portugal (fig. 2; Quadro III). Most of them are located in the Center-West and Northwest of Portugal, with a suitable c1imate (rainfall in general over 800 milimeters per year); the only sure geographical exception is Veiros, in Alto Alentejo province, in a region with comparable precipitations and less dry climare conditions than most of the territories South of the Tagus. There are less and less of these toponyms towards the South and the inner part of the country, and they are enrirely lacking in ali drier regions from Trás-os-Montes, Beira, Alentejo beyond Tagus' basin, and in Algarve. Nothing suggests beavers lived there, No pose-medieval toponym is known, nor any reference after middle XVth century. No such locality was at, or close by to, any frontier. Hence the hypothesis of veiro (e: al.) as meaning but points where expensive furs(supposedly known as veiros in general but without clearly saying from what animal they were obtained from) is to be discarded. During the Middle Ages, beaver distribution concerned all the main river basins from Minho to Tagus ones. Quice racefied in the XIIIth, the beavers may have disappeared from Portugal during the XVth century. Ecological requirements restricted their former distribution. Vulnerability to natural causes (i.e., severe drought) and to human pressure may have accounted heavily for this species extinction. Last (1446) reference for Portugal known to us suggests the species was by then almost extinct.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(l) The Pacific basin (Pacific area) may be regarded as moving eastwards like a double zip fastener relative to the continents and their respective plates (Pangaea area): opening in the East and closing in the West. This movement is tracked by a continuous mountain belt, the collision ages of which increase westwards. (2) The relative movements between the Pacific area and the Pangaea area in the W-E/E-W direction are generated by tidal forces (principle of hypocycloid gearing), whereby the lower mantle and the Pacific basin or area (Pacific crust = roof of the lower mantle?) rotate somewhat faster eastwards around the Earth's spin axis relative to the upper mantle/crust system with the continents and their respective plates (Pangaea area) (differential rotation). (3) These relative West to East/East to West displacements produce a perpetually existing sequence of distinct styles of opening and closing ocean basins, exemplified by the present East to West arrangement of ocean basins around the globe (Oceanic or Wilson Cycle: Rift/Red Sea style; Atlantic style; Mediterranean/Caribbean style as eastwards propagating tongue of the Pacific basin; Pacific style; Collision/Himalayas style). This sequence of ocean styles, of which the Pacific ocean is a part, moves eastwards with the lower mantle relative to the continents and the upper-mantle/crust of the Pangaea area. (4) Similarly, the collisional mountain belt extending westwards from the equator to the West of the Pacific and representing a chronological sequence of collision zones (sequential collisions) in the wake of the passing of the Pacific basin double zip fastener, may also be described as recording the history of oceans and their continental margins in the form of successive Wilson Cycles. (5) Every 200 to 250 m.y. the Pacific basin double zip fastener, the sequence of ocean styles of the Wilson Cycle and the eastwards growing collisional mountain belt in their wake complete one lap around the Earth. Two East drift lappings of 400 to 500 m.y. produce a two-lap collisional mountain belt spiral around a supercontinent in one hemisphere (North or South Pangaea). The Earth's history is subdivided into alternating North Pangaea growth/South Pangaea breakup eras and South Pangaea growth/North Pangaea breakup eras. Older North and South Pangaeas and their collisional mountain belt spirals may be reconstructed by rotating back the continents and orogenic fragments of a broken spiral (e.g. South Pangaea, Gondwana) to their previous Pangaea growth era orientations. In the resulting collisional mountain belt spiral, pieced together from orogenic segments and fragments, the collision ages have to increase successively towards the West. (6) With its current western margin orientated in a West-East direction North America must have collided during the Late Cretaceous Laramide orogeny with the northern margin of South America (Caribbean Andes) at the equator to the West of the Late Mesozoic Pacific. During post-Laramide times it must have rotated clockwise into its present orientation. The eastern margin of North America has never been attached to the western margin of North Africa but only to the western margin of Europe. (7) Due to migration eastwards of the sequence of ocean styles of the Wilson Cycle, relative to a distinct plate tectonic setting of an ocean, a continent or continental margin, a future or later evolutionary style at the Earth's surface is always depicted in a setting simultaneously developed further to the West and a past or earlier style in a setting simultaneously occurring further to the East. In consequence, ahigh probability exists that up to the Early Tertiary, Greenland (the ArabiaofSouth America?) occupied a plate tectonic setting which is comparable to the current setting of Arabia (the Greenland of Africa?). The Late Cretaceous/Early Tertiary Eureka collision zone (Eureka orogeny) at the northern margin of the Greenland Plate and on some of the Canadian Arctic Islands is comparable with the Middle to Late Tertiary Taurus-Bitlis-Zagros collision zone at the northern margin of the Arabian Plate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New Middle Pliocene ichthyofauna (2.4-2.2 Ma) from central-eastern Italy (Samoggia Torrent, Bologna) are described. These ichthyolites were found in a rather thin laminated layer that was deposited after the 2.4 Ma climatic crisis. The origin of this deposit, in which 31 taxa have been classified, is to be related to anoxic events on a regional and, probably, supraregional scale. This ichthyofaunistic association, which consists of living genera, is characterized by a clearcut predominance of mesopelagic species. The palaeoclimatic characters of these ichthyofauna indicate subtropical-type waters, while from a palaeobiogeographic point of view there is a close relationship with the present-day Atlantic-Mediterranean bioprovince. The Samoggia deposit has yielded six taxa that are absent or only occasionally present in the Mediterranean: one of these, Spratelloides gracilis, is exclusive of the Indo-Pacific bioprovince.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Mid Miocene marine formations of Salles area (former "Sallomacian" stage) have been studied again from numerous outcrops and cores. The deep structural framework influences notably of the characteristics and distribution of the deposits, which are neritic. The stratigraphy is stated precisely thanks to the planktonic fauna and floradetailed examination (probably Serravallian zones NN6 - N12). Several paleobiofacies are reconstituted from the rich invertebrate faunas, which give also paleoclimatic data.