33 resultados para DIFFERENTIAL EVOLUTION
Resumo:
(l) The Pacific basin (Pacific area) may be regarded as moving eastwards like a double zip fastener relative to the continents and their respective plates (Pangaea area): opening in the East and closing in the West. This movement is tracked by a continuous mountain belt, the collision ages of which increase westwards. (2) The relative movements between the Pacific area and the Pangaea area in the W-EfE-W direction are generated by tidal forces (principle of hypocycloid gearing), whereby the lower mantle and the Pacific basin or area (Pacific crust = roof of the lower mantle?) rotate somewhat faster eastwards around the Earth's spin axis relative to the upper mantle/crust system with the continents and their respective plates (Pangaea area) (differential rotation). (3) These relative West to East/East to West displacements produce a perpetually existing sequence of distinct styles of opening and closing oeean basins, exemplified by the present East to West arrangement of ocean basins around the globe (Oceanic or Wilson Cycle: Rift/Red Sea style; Atlantic style; Mediterranean/Caribbean style as eastwards propagating tongue of the Pacific basin; Pacific style; Collision/Himalayas style). This sequence of ocean styles, of which the Pacific ocean is a part, moves eastwards with the lower mantle relative to the continents and the upper-mantle/crust of the Pangaea area. (4) Similarly, the collisional mountain belt extending westwards from the equator to the West of the Pacific and representing a chronological sequence of collision zones (sequential collisions) in the wake of the passing of the Pacific basin double zip fastener, may also be described as recording the history of oceans and their continental margins in the form of successive Wilson Cycles. (5) Every 200 to 250 m.y. the Pacific basin double zip fastener, the sequence of ocean styles of the Wilson Cycle and the eastwards growing collisional mountain belt in their wake complete one lap around the Earth. Two East drift lappings of 400 to 500 m.y. produce a two-lap collisional mountain belt spiral around a supercontinent in one hemisphere (North or South Pangaea). The Earth's history is subdivided into alternating North Pangaea growth/South Pangaea breakup eras and South Pangaea growth/North Pangaea breakup eras. Older North and South Pangaeas and their collisional mountain belt spirals may be reconstructed by rotating back the continents and orogenic fragments of a broken spiral (e.g. South Pangaea, Gondwana) to their previous Pangaea growth era orientations. In the resulting collisional mountain belt spiral, pieced together from orogenic segments and fragments, the collision ages have to increase successively towards the West. (6) With its current western margin orientated in a West-East direction North America must have collided during the Late Cretaceous Laramide orogeny with the northern margin of South America (Caribbean Andes) at the equator to the West of the Late Mesozoic Pacific. During post-Laramide times it must have rotated clockwise into its present orientation. The eastern margin of North America has never been attached to the western margin of North Africa but only to the western margin of Europe. (7) Due to migration eastwards of the sequence of ocean styles of the Wilson Cycle, relative to a distinct plate tectonic setting of an ocean, a continent or continental margin, a future or later evolutionary style at the Earth's surface is always depicted in a setting simultaneously developed further to the West and a past or earlier style in a setting simultaneously occurring further to the East. In consequence, ahigh probability exists that up to the Early Tertiary, Greenland (the ArabiaofSouth America?) occupied a plate tectonic setting which is comparable to the current setting of Arabia (the Greenland of Africa?). The Late Cretaceous/Early Tertiary Eureka collision zone (Eureka orogeny) at the northern margin of the Greenland Plate and on some of the Canadian Arctic Islands is comparable with the Middle to Late Tertiary Taurus-Bitlis-Zagros collision zone at the northern margin of the Arabian Plate.
Resumo:
(l) The Pacific basin (Pacific area) may be regarded as moving eastwards like a double zip fastener relative to the continents and their respective plates (Pangaea area): opening in the East and closing in the West. This movement is tracked by a continuous mountain belt, the collision ages of which increase westwards. (2) The relative movements between the Pacific area and the Pangaea area in the W-E/E-W direction are generated by tidal forces (principle of hypocycloid gearing), whereby the lower mantle and the Pacific basin or area (Pacific crust = roof of the lower mantle?) rotate somewhat faster eastwards around the Earth's spin axis relative to the upper mantle/crust system with the continents and their respective plates (Pangaea area) (differential rotation). (3) These relative West to East/East to West displacements produce a perpetually existing sequence of distinct styles of opening and closing ocean basins, exemplified by the present East to West arrangement of ocean basins around the globe (Oceanic or Wilson Cycle: Rift/Red Sea style; Atlantic style; Mediterranean/Caribbean style as eastwards propagating tongue of the Pacific basin; Pacific style; Collision/Himalayas style). This sequence of ocean styles, of which the Pacific ocean is a part, moves eastwards with the lower mantle relative to the continents and the upper-mantle/crust of the Pangaea area. (4) Similarly, the collisional mountain belt extending westwards from the equator to the West of the Pacific and representing a chronological sequence of collision zones (sequential collisions) in the wake of the passing of the Pacific basin double zip fastener, may also be described as recording the history of oceans and their continental margins in the form of successive Wilson Cycles. (5) Every 200 to 250 m.y. the Pacific basin double zip fastener, the sequence of ocean styles of the Wilson Cycle and the eastwards growing collisional mountain belt in their wake complete one lap around the Earth. Two East drift lappings of 400 to 500 m.y. produce a two-lap collisional mountain belt spiral around a supercontinent in one hemisphere (North or South Pangaea). The Earth's history is subdivided into alternating North Pangaea growth/South Pangaea breakup eras and South Pangaea growth/North Pangaea breakup eras. Older North and South Pangaeas and their collisional mountain belt spirals may be reconstructed by rotating back the continents and orogenic fragments of a broken spiral (e.g. South Pangaea, Gondwana) to their previous Pangaea growth era orientations. In the resulting collisional mountain belt spiral, pieced together from orogenic segments and fragments, the collision ages have to increase successively towards the West. (6) With its current western margin orientated in a West-East direction North America must have collided during the Late Cretaceous Laramide orogeny with the northern margin of South America (Caribbean Andes) at the equator to the West of the Late Mesozoic Pacific. During post-Laramide times it must have rotated clockwise into its present orientation. The eastern margin of North America has never been attached to the western margin of North Africa but only to the western margin of Europe. (7) Due to migration eastwards of the sequence of ocean styles of the Wilson Cycle, relative to a distinct plate tectonic setting of an ocean, a continent or continental margin, a future or later evolutionary style at the Earth's surface is always depicted in a setting simultaneously developed further to the West and a past or earlier style in a setting simultaneously occurring further to the East. In consequence, ahigh probability exists that up to the Early Tertiary, Greenland (the ArabiaofSouth America?) occupied a plate tectonic setting which is comparable to the current setting of Arabia (the Greenland of Africa?). The Late Cretaceous/Early Tertiary Eureka collision zone (Eureka orogeny) at the northern margin of the Greenland Plate and on some of the Canadian Arctic Islands is comparable with the Middle to Late Tertiary Taurus-Bitlis-Zagros collision zone at the northern margin of the Arabian Plate.
Resumo:
The basic motivation of this work was the integration of biophysical models within the interval constraints framework for decision support. Comparing the major features of biophysical models with the expressive power of the existing interval constraints framework, it was clear that the most important inadequacy was related with the representation of differential equations. System dynamics is often modelled through differential equations but there was no way of expressing a differential equation as a constraint and integrate it within the constraints framework. Consequently, the goal of this work is focussed on the integration of ordinary differential equations within the interval constraints framework, which for this purpose is extended with the new formalism of Constraint Satisfaction Differential Problems. Such framework allows the specification of ordinary differential equations, together with related information, by means of constraints, and provides efficient propagation techniques for pruning the domains of their variables. This enabled the integration of all such information in a single constraint whose variables may subsequently be used in other constraints of the model. The specific method used for pruning its variable domains can then be combined with the pruning methods associated with the other constraints in an overall propagation algorithm for reducing the bounds of all model variables. The application of the constraint propagation algorithm for pruning the variable domains, that is, the enforcement of local-consistency, turned out to be insufficient to support decision in practical problems that include differential equations. The domain pruning achieved is not, in general, sufficient to allow safe decisions and the main reason derives from the non-linearity of the differential equations. Consequently, a complementary goal of this work proposes a new strong consistency criterion, Global Hull-consistency, particularly suited to decision support with differential models, by presenting an adequate trade-of between domain pruning and computational effort. Several alternative algorithms are proposed for enforcing Global Hull-consistency and, due to their complexity, an effort was made to provide implementations able to supply any-time pruning results. Since the consistency criterion is dependent on the existence of canonical solutions, it is proposed a local search approach that can be integrated with constraint propagation in continuous domains and, in particular, with the enforcing algorithms for anticipating the finding of canonical solutions. The last goal of this work is the validation of the approach as an important contribution for the integration of biophysical models within decision support. Consequently, a prototype application that integrated all the proposed extensions to the interval constraints framework is developed and used for solving problems in different biophysical domains.
Resumo:
This work presents the results of the experimental study of proton induced nuclear reactions in lithium, namely the 7Li(p,α) 4He, 6Li(p,α) 3He and 7Li(p,p)7Li reactions. The amount of 7Li and 6Li identified as primordial and observed in very old stars of the Milky Way galactic halo strongly deviates from the predictions of primordial nucleosynthesis and stellar evolution models which depend, among other factors, on the cross sections of reactions like 7Li(p,α) 4He and 6Li(p,α) 3He. These discrepancies have triggered a large amount of research in the fields of stellar evolution, cosmology, pre-galactic evolution and low energy nuclear reactions. Focusing on nuclear reactions, this work has measured the 7Li(p,α) 4He and 6Li(p,α) 3He reactions cross sections (expressed in terms of the astrophysical S -factor) with higher accuracy, and the electron screening effects in these reactions for different environments (insulators and metallic targets). The 7Li(p,α) 4He angular distributions were also measured. These measurementstook place in two laboratory facilities, in the framework of the LUNA (Laboratory for Undergroud Nuclear Astrophysics) international collaboration, namely the Laboratorio ´ de Feixe de Ioes ˜ in ITN (Instituto Tecnologico ´ e Nuclear) Sacavem, ´ Portugal, and the Dynamitron-TandemLaboratorium in Ruhr-Universitat¨ Bochum, Germany. The ITN target chamber was modified to measure these nuclear reactions, with the design and construction of new components, the addition of one turbomolecular pump and a cold finger. The 7Li(p,α) 4He and 6Li(p,α) 3He reactions were measured concurrently with seven and four targets, respectively. These targets were produced in order to obtain adequate and stable lithium depth profiles. In metallic environments, the measured electron screening potential energies are much higher than the predictions of atomic-physics models. The Debye screening model applied to the metallic conduction electrons is able to explain these high values. It is a simple model, but also very robust. Concerning primordial nucleosynthesis and stellar evolution models, these results are very important as they show that laboratory measurements are well controlled, and the model inputs from these cross sections are therefore correct. In this work the 7Li(p,p)7Li differential cross section was also measured, which is useful to describe the 7Li(p,α) 4He entrance channel.
Resumo:
This paper gives a short description of main stratigraphic unities from the early Cretaceous in Estremadura and Algarve, with their lithological, sedimentological and paleontological characteristics. The distribution of facies enable to propose a paleogeographic frame including eroded high areas and sedimentary low areas roughly parallel to the present coast. The early Cretaceous from Estremadura is splited up into three megasequences each one with regressive then transgressive tendencies: this fact must be connected with the leading action of distensive, slow or sudden, movements. Beyond the hercynian fault of Messejana, Algarve presents a different sedimentary evolution during the early Cretaceous.
Resumo:
XRD-analyses of pelitic deposits of Upper Jurassic to Miocene age occuring in the eastern Algarve (Portugal), give evidence of the occurrence of detrital clay minerals of continental origin as well as of conspicuous neoformations of marine provenance. The vertical succession of clay-mineral associations indicates the existence of three distinctive evolutionary cycles which are thought to reflect tectonically controlled transgressive-regressive events.
Resumo:
The enzyme hydrogenase isolated from the sulphate reducing anaerobic bacterium Desulfovibrio gigas was encapsulated in reverse micelles of AOT–water–isooctane. The enzyme ability to consume molecular hydrogen was studied as a function of the micelle size (given by Wo = [H2O]/[organic solvent]). A peak of catalytic activity was obtained for Wo = 18, a micelle size theoretically fitting the heterodimeric hydrogenase molecule. At this Wo value, the recorded catalytic activity was slightly higher than in a buffer system(Kcat = 169.43 s−1 against the buffer value of 151 s−1). The optimal buffer used to encapsulate the enzyme was found to be imidazole 50 mM, pH 9.0. The molecular hydrogen production activity was also tested in this reverse micelle medium.
Resumo:
The extensional process affecting Iberia during the Triassic and Jurassic times change from the end of the Cretaceous and, throughout the Palaeocene, the displacement between the African and European plates was clearly convergent and part of the future Internal Zone of the Betic Cordillera was affected. To the west, the Atlantic continued to open as a passive margin and, to the north, no significant deformation occurred. During the Eocene, the entire Iberian plate was subjected to compression. which caused major deformations in the Pyrenees and also in the Alpujarride and Nevado-Filabride, Internal Betic, complexes. In the Oligocene continued this situation, but in addition, the new extensional process ocurring in the western Mediterranean area, together with the constant eastward drift of Iberia due to Atlantic opening, compressed the eastern sector of Iberia, giving rise to the structuring of the Iberian Cordillera. The Neogene was the time when the Betic Cordillera reached its fundamental features with the westward displacement of the Betic-Rif Internal Zone, expelled by the progressive opening of the Algerian Basin, opening prolonged till the Alboran Sea. From the late Miocene onwards, all Iberia was affected by a N-S to NNW-SSE compression, combined in many points by a near perpendicular extension. Specially in eastern and southern Iberia a radial extension superposed these compression and extension.
Resumo:
The Setúbal and São Vicente canyons are two major modern submarine canyons located in the southwest Iberian margin of Portugal. Although recognised as Pliocene to Quaternary features, their development during the Tertiary has not been fully understood up to date. A grid of 2D seismic data has been used to characterise the sedimentary deposits of the adjacent flanks to the submarine canyons. The relationship between the geological structure of the margin and the canyon's present location has been investigated. The interpretation of the main seismic units allowed the recognition of three generations of ravinements probably originated after middle Oligocene. Six units grouped in two distinctive seismic sequences have been identified and correlated with offshore stratigraphic data. Seismic Sequence 2 (SS2), the oldest, overlies Mesozoic and upper Eocene deformed units. Seismic Sequence I (SS1) is composed of four different seismic packages separated from SS2 by an erosional surface. The base of the studied sediment ridges is marked by an extensive erosional surface derived from a early/middle Oligocene relative sea-level fall. Deposition in the adjacent area to the actual canyons was reinitiated in late Oligocene in the form of transgressive and channel-fill deposits. A new depositional hiatus is recorded onshore during the Burdigalian, coincident with the unconformity separating SS1 and SS2. This can be correlated with the Arrábida unconformity and with the paroxysmal Burdigalian phase of the Betic domain. Presently, the Setúbal and São Vicente submarine canyons locally cut SS1 and SS2, forming distinctive channels from those recognised on the seismic data. On the upper shelf both dissect highly deformed areas subject to important erosion.
Resumo:
The chemical features of the ground water in the Lower Tagus Cenozoic deposits are strongly influenced by lithology, by the velocity and direction of the water movement as well as by the localization of the recharge and discharge zones. The mineralization varies between 80 and 900 mg/l. It is minimal in the recharge zones and in the Pliocene sand and maximum in the Miocene carbonated and along the alluvial valley. Mineralization always reflects the time of permanence, the temperature and the pressure. The natural process of water mineralization is disturbed in agricultural areas because the saline concentration of the infiltration water exceeds that of the infiltrated rainwater. In the discharge zones, the rise of the more mineralized, some times thermal deep waters related to tectonic accidents give rise to anomalies in the distribution of the aquiferous system mineralization model. The diversity of the hydrochemical facies of the ground water may be related to several factors whose identification is some times difficult.
Resumo:
Climatic reconstructions based on palynological data from Aquitaine outcrops emphasize an important degradation phase during the Lower Serravallian. Climatic and environmental changes can be related to sea-level variations (Bur 5 / Lan 1, Lan 2 / Ser 1 and Ser 2 cycles). Transgressive phases feature warmer conditions and more open environments whereas regressive phases are marked by a cooler climate and an extent of the forest cover. From Langhian to Middle Serravallian, a general cooling is highlighted, with disappearance of most megathermic taxa and a transition from warm and dry climate to warm-temperate and much more humid conditions. Conclusions are consistent with studies on bordering areas and place the major degradation phase around 14 My. The palynologic data allow filling a gap in the climatic evolution of Southern France, as a connection between Lower and Upper Miocene, both well recorded. These results document, on Western Europe scale, latitudinal climatic gradient across Northern hemisphere while featuring a transition between Mediterranean area and northeastern Atlantic frontage.
Resumo:
Dissertação apresentada para obtenção do grau de Doutor em Biologia Celular pelo Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa
Resumo:
Dissertation presented to obtain the Ph.D. degree in Biology at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa.
Resumo:
Dissertação para obtenção do Grau de Doutor em Biologia
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação.