20 resultados para Biomedical imaging
Resumo:
Dissertation to Obtain the Degree of Master in Biomedical Engineering
Resumo:
Retinal imaging with a confocal scaning laser Ophthalmoscope (cSLO) involves scanning a small laser beam over the retina and constructing an image from the reflected light. By applying the confocal principle, tomographic images can be produced by measuring a sequence of slices at different depths. However, the thickness of such slices, when compared with the retinal thickness, is too large to give useful 3D retinal images, if no processing is done. In this work, a prototype cSLO was modified in terms hardware and software to give the ability of doing the tomographic measurements with the maximum theoretical axial resolution possible. A model eye was built to test the performance of the system. A novel algorithm has been developed which fits a double Gaussian curve to the axial intensity profiles generated from a stack of images slices. The underlying assumption is that the laser light has mainly been reflected by two structures in the retina, the internal limiting membrane and the retinal pigment epithelium. From the fitted curve topographic images and novel thickness images of the retina can be generated. Deconvolution algorithms have also been developed to improve the axial resolution of the system, using a theoretically predicted cSLO point spread function. The technique was evaluated using measurements made on a model eye, four normal eyes and seven eyes containing retinal pathology. The reproducibility, accuracy and physiological measurements obtained, were compared with available published data, and showed good agreement. The difference in the measurements when using a double rather than a single Gaussian model was also analysed.
Resumo:
Dissertation submitted in Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa for the degree of Master in Biomedical Engineering
Resumo:
Thesis submitted in the fulfillment of the requirements for the Degree of Master in Biomedical Engineering
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
Based on the report for the unit “Project III” of the PhD programme on Technology Assessment in 2011. The unit was supervised by Prof. António B. Moniz (FCT-UNL).
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Dissertation submitted in the fufillment of the requirements for the Degree of Master in Biomedical Engineering
Resumo:
Dissertation presented to Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa for obtaining the master degree in Membrane Engineering
Resumo:
Dissertation submitted in Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa for the degree of Master of Biomedical Engineering
Resumo:
Dissertation presented at Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa to obtain a Master Degree in Biomedical Engineering
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Breast cancer is the most common type of cancer among women all over the world. An important issue that is not commonly addressed in breast cancer imaging literature is the importance of imaging the underarm region—where up to 80% of breast cancer cells can metastasise to. The first axillary lymph nodes to receive drainage from the primary tumour in the breast are called Sentinel Node. If cancer cells are found in the Sentinel Node, there is an increased risk of metastatic breast cancer which makes this evaluation crucial to decide what follow-up exams and therapy to follow. However, non-invasive detection of cancer cells in the lymph nodes is often inconclusive, leading to the surgical removal of too many nodes which causes adverse side-effects for patients. Microwave Imaging is one of the most promising non-invasive imaging modalities for breast cancer early screening and monitoring. This novel study tests the feasibility of imaging the axilla region by means of the simulation of an Ultra-Wideband Microwave Imaging system. Simulations of such system are completed in several 2D underarm models that mimic the axilla. Initial imaging results are obtained by means of processing the simulated backscattered signals by eliminating artefacts caused by the skin and beamforming the processed signals in order to time-align all the signals recorded at each antenna. In this dissertation several image formation algorithms are implemented and compared by visual inspection of the resulting images and through a range of performance metrics, such as Signal-to-Clutter Ratio and FullWidth Half Maximum calculations. The results in this study showed that Microwave Imaging is a promising technique that might allow to identify the presence and location of metastasised cancer cells in axillary lymph nodes, enabling the non-invasive evaluation of breast cancer staging.
Resumo:
Deep-eutectic solvents (DES) are considered novel renewable and biodegradable solvents, with a cheap and easy synthesis, without waste production. Later it was discovered a new subclass of DES that even can be biocompatible, since their synthesis uses primary metabolites such as amino acids, organic acids and sugars, from organisms. This subclass was named natural deep-eutectic solvents (NADES). Due to their properties it was tried to study the interaction between these solvents and biopolymers, in order to produce functionalized fibers for biomedical applications. In this way, fibers were produced by using the electrospinning technique. However, it was first necessary to study some physical properties of NADES, as well as the influence of water in their properties. It has been concluded that the water has a high influence on NADES properties, which can be seen on the results obtained from the rheology and viscosity studies. The fluid dynamics had changed, as well as the viscosity. Afterwards, it was tested the viability of using a starch blend. First it was tested the dissolution of these biopolymers into NADES, in order to study the viability of their application in electrospinning. However the results obtained were not satisfactory, since the starch polymers studied did not presented any dissolution in any NADES, or even in organic solvents. In this way it was changed the approach, and it was used other biocompatible polymers. Poly(ethylene oxide), poly(vinyl alcohol) and gelatin were the others biopolymers tested for the electrospinning, with NADES. All polymers show good results, since it was possible to obtain fibers. However for gelatin it was used only eutectic mixtures, containing active pharmaceutical ingredients (API’s), instead of NADES. For this case it was used mandelic acid (antimicrobial properties), choline chloride, ibuprofen (anti-inflammatory properties) and menthol (analgesic properties). The polymers and the produced fibers were characterized by scanning electron microscope (SEM), Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). With the help of these techniques it was possible to conclude that it was possible to encapsulate NADES within the fibers. Rheology it was also study for poly(ethylene oxide) and poly(vinyl alcohol), in a way to understand the influence of polymer concentration, on the electrospinning technique. For the gelatin, among the characterization techniques, it was also performed cytotoxicity and drug release studies. The gelatin membranes did not show any toxicity for the cells, since their viability was maintained. Regarding the controlled release profile experiment no conclusion could be drawn from the experiments, due to the rapid and complete dissolution of the gelatin in the buffer solution. However it was possible to quantify the mixture of choline chloride with mandelic acid, allowing thus to complete, and confirm, the information already obtained for the others characterization technique.