183 resultados para simulation-optimization

em Instituto Polit


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the proposal of an architecture for developing systems that interact with Ambient Intelligence (AmI) environments. This architecture has been proposed as a consequence of a methodology for the inclusion of Artificial Intelligence in AmI environments (ISyRAmI - Intelligent Systems Research for Ambient Intelligence). The ISyRAmI architecture considers several modules. The first is related with the acquisition of data, information and even knowledge. This data/information knowledge deals with our AmI environment and can be acquired in different ways (from raw sensors, from the web, from experts). The second module is related with the storage, conversion, and handling of the data/information knowledge. It is understood that incorrectness, incompleteness, and uncertainty are present in the data/information/knowledge. The third module is related with the intelligent operation on the data/information/knowledge of our AmI environment. Here we include knowledge discovery systems, expert systems, planning, multi-agent systems, simulation, optimization, etc. The last module is related with the actuation in the AmI environment, by means of automation, robots, intelligent agents and users.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents the Fuzzy Monte Carlo Model for Transmission Power Systems Reliability based studies (FMC-TRel) methodology, which is based on statistical failure and repair data of the transmission power system components and uses fuzzyprobabilistic modeling for system component outage parameters. Using statistical records allows developing the fuzzy membership functions of system component outage parameters. The proposed hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models allows catching both randomness and fuzziness of component outage parameters. A network contingency analysis to identify any overloading or voltage violation in the network is performed once obtained the system states. This is followed by a remedial action algorithm, based on Optimal Power Flow, to reschedule generations and alleviate constraint violations and, at the same time, to avoid any load curtailment, if possible, or, otherwise, to minimize the total load curtailment, for the states identified by the contingency analysis. For the system states that cause load curtailment, an optimization approach is applied to reduce the probability of occurrence of these states while minimizing the costs to achieve that reduction. This methodology is of most importance for supporting the transmission system operator decision making, namely in the identification of critical components and in the planning of future investments in the transmission power system. A case study based on Reliability Test System (RTS) 1996 IEEE 24 Bus is presented to illustrate with detail the application of the proposed methodology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O trabalho tem como objectivo a simulação e verificação do funcionamento de 3 colunas de destilação, a T-0303, a T-0306 e a T-0307, integrantes do processo de produção de p-xileno, baseado nos dados relativos ao ano de 2008, existente na refinaria da Galp no Porto. A abordagem consistiu em utilizar o AspenPlus quer para a simulação quer para a optimização, sendo esta última complementada com um planeamento experimental e optimização no Minitab15. O critério de optimização foi estabelecido a partir de uma análise ao processo actual, na qual se averiguou que se poderia, no limite: produzir mais 15,30ton.ano-1 de p-xileno no conjunto de colunas T-0306 e T-0307; remover mais 1,36ton.ano-1 de dessorvente na coluna T-0303 e diminuir a energia necessária para o processo. Da optimização à coluna T-0303, obteve-se uma melhoria de remoção de 0,34ton.ano-1 de dessorvente, e uma diminuição na energia necessária para 333,24.106kWh por ano. Para obter esta optimização houve necessidade de ultrapassar em 109,852kW a potência da bomba P0306A/S e alterou-se a razão de refluxo na base para 46,1. A optimização conjunta das colunas T-0306 e T-0307 apenas possibilita uma melhoria de p-xileno de 3,4ton.ano-1. De uma optimização individual da coluna T-0307, mantendo a coluna T-0306 nas condições actuais, obteve-se uma melhoria na produção de p-xileno de 14,62ton.ano-1. Neste ensaio as potências do condensador E-0314, do reebulidor E-0306 e da bomba P0314A/S excedem, as actuais em, respectivamente, 35,71kW, 35,74kW e 0,12kW. Enquanto para a situação actual o custo de p-xileno equivale a 722,17€.ton-1, para a optimização simultânea da coluna T-0303 e T-0307, é de 723,39€.ton-1 e para a optimização de apenas da coluna T-0307 é de 722,81€.ton-1. Perante um preço de venda actual de pxileno de 749,10€.ton-1 todas as situações são favoráveis. Em suma, é possível uma optimização processual mas o custo por tonelada de pxileno fica superior ao actual.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The recent changes concerning the consumers’ active participation in the efficient management of load devices for one’s own interest and for the interest of the network operator, namely in the context of demand response, leads to the need for improved algorithms and tools. A continuous consumption optimization algorithm has been improved in order to better manage the shifted demand. It has been done in a simulation and user-interaction tool capable of being integrated in a multi-agent smart grid simulator already developed, and also capable of integrating several optimization algorithms to manage real and simulated loads. The case study of this paper enhances the advantages of the proposed algorithm and the benefits of using the developed simulation and user interaction tool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The large increase of distributed energy resources, including distributed generation, storage systems and demand response, especially in distribution networks, makes the management of the available resources a more complex and crucial process. With wind based generation gaining relevance, in terms of the generation mix, the fact that wind forecasting accuracy rapidly drops with the increase of the forecast anticipation time requires to undertake short-term and very short-term re-scheduling so the final implemented solution enables the lowest possible operation costs. This paper proposes a methodology for energy resource scheduling in smart grids, considering day ahead, hour ahead and five minutes ahead scheduling. The short-term scheduling, undertaken five minutes ahead, takes advantage of the high accuracy of the very-short term wind forecasting providing the user with more efficient scheduling solutions. The proposed method uses a Genetic Algorithm based approach for optimization that is able to cope with the hard execution time constraint of short-term scheduling. Realistic power system simulation, based on PSCAD , is used to validate the obtained solutions. The paper includes a case study with a 33 bus distribution network with high penetration of distributed energy resources implemented in PSCAD .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concept of demand response has a growing importance in the context of the future power systems. Demand response can be seen as a resource like distributed generation, storage, electric vehicles, etc. All these resources require the existence of an infrastructure able to give players the means to operate and use them in an efficient way. This infrastructure implements in practice the smart grid concept, and should accommodate a large number of diverse types of players in the context of a competitive business environment. In this paper, demand response is optimally scheduled jointly with other resources such as distributed generation units and the energy provided by the electricity market, minimizing the operation costs from the point of view of a virtual power player, who manages these resources and supplies the aggregated consumers. The optimal schedule is obtained using two approaches based on particle swarm optimization (with and without mutation) which are compared with a deterministic approach that is used as a reference methodology. A case study with two scenarios implemented in DemSi, a demand Response simulator developed by the authors, evidences the advantages of the use of the proposed particle swarm approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to develop a flexible simulator, a variety of models for Ancillary Services (AS) negotiation has been implemented in MASCEM – a multi-agent system competitive electricity markets simulator. In some of these models, the energy and the AS are addressed simultaneously while in other models they are addressed separately. This paper presents an energy and ancillary services joint market simulation. This paper proposes a deterministic approach for solving the energy and ancillary services joint market. A case study based on the dispatch of Regulation Down, Regulation Up, Spinning Reserve, and Non-Spinning Reserve services is used to demonstrate that the use of the developed methodology is suitable for solving this kind of optimization problem. The presented case study is based on CAISO real AS market data considers fifteen bids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In distributed soft real-time systems, maximizing the aggregate quality-of-service (QoS) is a typical system-wide goal, and addressing the problem through distributed optimization is challenging. Subtasks are subject to unpredictable failures in many practical environments, and this makes the problem much harder. In this paper, we present a robust optimization framework for maximizing the aggregate QoS in the presence of random failures. We introduce the notion of K-failure to bound the effect of random failures on schedulability. Using this notion we define the concept of K-robustness that quantifies the degree of robustness on QoS guarantee in a probabilistic sense. The parameter K helps to tradeoff achievable QoS versus robustness. The proposed robust framework produces optimal solutions through distributed computations on the basis of Lagrangian duality, and we present some implementation techniques. Our simulation results show that the proposed framework can probabilistically guarantee sub-optimal QoS which remains feasible even in the presence of random failures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Search Optimization methods are needed to solve optimization problems where the objective function and/or constraints functions might be non differentiable, non convex or might not be possible to determine its analytical expressions either due to its complexity or its cost (monetary, computational, time,...). Many optimization problems in engineering and other fields have these characteristics, because functions values can result from experimental or simulation processes, can be modelled by functions with complex expressions or by noise functions and it is impossible or very difficult to calculate their derivatives. Direct Search Optimization methods only use function values and do not need any derivatives or approximations of them. In this work we present a Java API that including several methods and algorithms, that do not use derivatives, to solve constrained and unconstrained optimization problems. Traditional API access, by installing it on the developer and/or user computer, and remote API access to it, using Web Services, are also presented. Remote access to the API has the advantage of always allow the access to the latest version of the API. For users that simply want to have a tool to solve Nonlinear Optimization Problems and do not want to integrate these methods in applications, also two applications were developed. One is a standalone Java application and the other a Web-based application, both using the developed API.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing use of Carbon-Fibre Reinforced Plastic (CFRP) laminates in high responsibility applications introduces an issue regarding their handling after damage. The availability of efficient repair methods is essential to restore the strength of the structure. The availability of accurate predictive tools for the repairs behaviour is also essential for the reduction of costs and time associated to extensive tests. This work reports on a numerical study of the tensile behaviour of three-dimensional (3D) adhesively-bonded scarf repairs in CFRP structures, using a ductile adhesive. The Finite Element (FE) analysis was performed in ABAQUS® and Cohesive Zone Models (CZM’s) was used for the simulation of damage in the adhesive layer. A parametric study was performed on two geometric parameters. The use of overlaminating plies covering the repaired region at the outer or both repair surfaces was also tested as an attempt to increase the repairs efficiency. The results allowed the proposal of design principles for repairing CFRP structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study is to optimize the heat flow through the pultrusion die assembly system on the manufacturing process of a specific glass-fiber reinforced polymer (GFRP) pultrusion profile. The control of heat flow and its distribution through whole die assembly system is of vital importance in optimizing the actual GFRP pultrusion process. Through mathematical modeling of heating-die process, by means of Finite Element Analysis (FEA) program, an optimum heater selection, die position and temperature control was achieved. The thermal environment within the die was critically modeled relative not only to the applied heat sources, but also to the conductive and convective losses, as well as the thermal contribution arising from the exothermic reaction of resin matrix as it cures or polymerizes from the liquid to solid condition. Numerical simulation was validated with basis on thermographic measurements carried out on key points along the die during pultrusion process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Demand response can play a very relevant role in the context of power systems with an intensive use of distributed energy resources, from which renewable intermittent sources are a significant part. More active consumers participation can help improving the system reliability and decrease or defer the required investments. Demand response adequate use and management is even more important in competitive electricity markets. However, experience shows difficulties to make demand response be adequately used in this context, showing the need of research work in this area. The most important difficulties seem to be caused by inadequate business models and by inadequate demand response programs management. This paper contributes to developing methodologies and a computational infrastructure able to provide the involved players with adequate decision support on demand response programs and contracts design and use. The presented work uses DemSi, a demand response simulator that has been developed by the authors to simulate demand response actions and programs, which includes realistic power system simulation. It includes an optimization module for the application of demand response programs and contracts using deterministic and metaheuristic approaches. The proposed methodology is an important improvement in the simulator while providing adequate tools for demand response programs adoption by the involved players. A machine learning method based on clustering and classification techniques, resulting in a rule base concerning DR programs and contracts use, is also used. A case study concerning the use of demand response in an incident situation is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The smart grid concept is a key issue in the future power systems, namely at the distribution level, with deep concerns in the operation and planning of these systems. Several advantages and benefits for both technical and economic operation of the power system and of the electricity markets are recognized. The increasing integration of demand response and distributed generation resources, all of them mostly with small scale distributed characteristics, leads to the need of aggregating entities such as Virtual Power Players. The operation business models become more complex in the context of smart grid operation. Computational intelligence methods can be used to give a suitable solution for the resources scheduling problem considering the time constraints. This paper proposes a methodology for a joint dispatch of demand response and distributed generation to provide energy and reserve by a virtual power player that operates a distribution network. The optimal schedule minimizes the operation costs and it is obtained using a particle swarm optimization approach, which is compared with a deterministic approach used as reference methodology. The proposed method is applied to a 33-bus distribution network with 32 medium voltage consumers and 66 distributed generation units.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi- Agent System for Competitive Electricity Markets), which performs realistic simulations of the electricity markets. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from each market context. However, it is still necessary to adequately optimize the players’ portfolio investment. For this purpose, this paper proposes a market portfolio optimization method, based on particle swarm optimization, which provides the best investment profile for a market player, considering different market opportunities (bilateral negotiation, market sessions, and operation in different markets) and the negotiation context such as the peak and off-peak periods of the day, the type of day (business day, weekend, holiday, etc.) and most important, the renewable based distributed generation forecast. The proposed approach is tested and validated using real electricity markets data from the Iberian operator – MIBEL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi-Agent System for Competitive Electricity Markets), which simulates the electricity markets. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. However, it is still necessary to adequately optimize the player’s portfolio investment. For this purpose, this paper proposes a market portfolio optimization method, based on particle swarm optimization, which provides the best investment profile for a market player, considering the different markets the player is acting on in each moment, and depending on different contexts of negotiation, such as the peak and offpeak periods of the day, and the type of day (business day, weekend, holiday, etc.). The proposed approach is tested and validated using real electricity markets data from the Iberian operator – OMIE.