50 resultados para evaluation algorithm
em Instituto Polit
Resumo:
Grande parte dos triples-stores são open source e desenvolvidos em Java, disponibilizando interfaces standards e privadas de acesso. A grande maioria destes sistemas não dispõe de mecanismos de controlo de acessos nativos, o que dificulta ou impossibilita a sua adopção em ambientes em que a segurança dos factos é importante (e.g. ambiente empresarial). Complementarmente observa-se que o modelo de controlo de acesso a triplos e em particular a triplos descritos por ontologias não está standardizado nem sequer estabilizado, havendo diversos modelos de descrição e algoritmos de avaliação de permissões de acesso. O trabalho desenvolvido nesta tese/dissertação propõe um modelo e interface de controlo de acesso que permite e facilite a sua adopção por diferentes triple-stores já existentes e a integração dos triples-stores com outros sistemas já existentes na organização. Complementarmente, a plataforma de controlo de acesso não impõe qualquer modelo ou algoritmo de avaliação de permissões, mas pelo contrário permite a adopção de modelos e algoritmos distintos em função das necessidades ou desejos. Finalmente demonstra-se a aplicabilidade e validade do modelo e interface propostos, através da sua implementação e adopção ao triple-store SwiftOWLIM já existente, que não dispõe de mecanismo de controlo de acessos nativo.
Resumo:
This paper proposes a Genetic Algorithm (GA) for the design of combinational logic circuits. The fitness function evaluation is calculated using Fractional Calculus. This approach extends the classical fitness function by including a fractional-order dynamical evaluation. The experiments reveal superior results when comparing with the classical method.
Resumo:
The container loading problem (CLP) is a combinatorial optimization problem for the spatial arrangement of cargo inside containers so as to maximize the usage of space. The algorithms for this problem are of limited practical applicability if real-world constraints are not considered, one of the most important of which is deemed to be stability. This paper addresses static stability, as opposed to dynamic stability, looking at the stability of the cargo during container loading. This paper proposes two algorithms. The first is a static stability algorithm based on static mechanical equilibrium conditions that can be used as a stability evaluation function embedded in CLP algorithms (e.g. constructive heuristics, metaheuristics). The second proposed algorithm is a physical packing sequence algorithm that, given a container loading arrangement, generates the actual sequence by which each box is placed inside the container, considering static stability and loading operation efficiency constraints.
Resumo:
Presented at IEEE 21st International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA 2015). 19 to 21, Aug, 2015.
Resumo:
5th. European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008) 8th. World Congress on Computational Mechanics (WCCM8)
Resumo:
This study attempted to evaluate the influence of using an unstable shoe in muscle re-cruitment strategies and center of pressure (CoP) displacement after the application of an external perturba-tion. Fourteen healthy female subjects participated in this study. The electromyographic activity of medial ga-strocnemius, tibialis anterior, rectus femoris, biceps femoris, rectus abdominis and erector spinae muscles and the kinetic values to calculate the CoP were collected and analyzed after the application of an external pertur-bation with the subject in standing position, with no shoes and using unstable footwear. The results showed increased in medial gastrocnemius activity during the first compensatory postural adjustments and late com-pensatory postural adjustments when using an unstable shoe. There were no differences in standard deviation and maximum peak of anteroposterior displacement of CoP between measurements. From the experimental findings, one can conclude that the use of an unstable shoe leads to an increase in gastrocnemius activity with no increase in CoP displacement following an unexpected external perturbation.
Resumo:
This paper presents the development of a solar photovoltaic (PV) model based on PSCAD/EMTDC - Power System Computer Aided Design – including a mathematical model study. An additional algorithm has been implemented in MATLAB software in order to calculate several parameters required by the PSCAD developed model. All the simulation study has been performed in PSCAD/MATLAB software simulation tool. A real data base concerning irradiance, cell temperature and PV power generation was used in order to support the evaluation of the implemented PV model.
Resumo:
In recent years the use of several new resources in power systems, such as distributed generation, demand response and more recently electric vehicles, has significantly increased. Power systems aim at lowering operational costs, requiring an adequate energy resources management. In this context, load consumption management plays an important role, being necessary to use optimization strategies to adjust the consumption to the supply profile. These optimization strategies can be integrated in demand response programs. The control of the energy consumption of an intelligent house has the objective of optimizing the load consumption. This paper presents a genetic algorithm approach to manage the consumption of a residential house making use of a SCADA system developed by the authors. Consumption management is done reducing or curtailing loads to keep the power consumption in, or below, a specified energy consumption limit. This limit is determined according to the consumer strategy and taking into account the renewable based micro generation, energy price, supplier solicitations, and consumers’ preferences. The proposed approach is compared with a mixed integer non-linear approach.
Resumo:
To maintain a power system within operation limits, a level ahead planning it is necessary to apply competitive techniques to solve the optimal power flow (OPF). OPF is a non-linear and a large combinatorial problem. The Ant Colony Search (ACS) optimization algorithm is inspired by the organized natural movement of real ants and has been successfully applied to different large combinatorial optimization problems. This paper presents an implementation of Ant Colony optimization to solve the OPF in an economic dispatch context. The proposed methodology has been developed to be used for maintenance and repairing planning with 48 to 24 hours antecipation. The main advantage of this method is its low execution time that allows the use of OPF when a large set of scenarios has to be analyzed. The paper includes a case study using the IEEE 30 bus network. The results are compared with other well-known methodologies presented in the literature.
Resumo:
The Developmental Dysplasia of the Hip (DDH), also know as Congenital Dislocation of the Hip, is common in infants and children and may persist into adulthood. The radiographic interpretation is highly conditioned by appropriate patient positioning and image quality criteria. The main goal of this study is to demonstrate the value of radiographic evaluation of DDH. Through the retrospective analysis of 65 radiographs of the hips, only 2 (3.1%) female patients with 1-2 years of age presented radiographic findings of DDH. The inappropriate field size and the improper placement and size of the gonadal shields, were the most common errors observed.
Resumo:
This paper starts with the analysis of the unusual inherence mechanism, from two aspects: accumulating and human error. We put forward twelve factors affected the decision of the emergency treatment plan in practice and summarized the evaluation index system combining with literature data. Then we screened out eighteen representative indicators by used the FDM expert questionnaire in the first phase. Hereafter, we calculated the weight of evaluation index and sorted them by the FAHP expert questionnaire, and came up with the frame of the evaluation rule by combined with the experience. In the end, the evaluation principles are concluded.
Resumo:
This paper presents a Unit Commitment model with reactive power compensation that has been solved by Genetic Algorithm (GA) optimization techniques. The GA has been developed a computational tools programmed/coded in MATLAB. The main objective is to find the best generations scheduling whose active power losses are minimal and the reactive power to be compensated, subjected to the power system technical constraints. Those are: full AC power flow equations, active and reactive power generation constraints. All constraints that have been represented in the objective function are weighted with a penalty factors. The IEEE 14-bus system has been used as test case to demonstrate the effectiveness of the proposed algorithm. Results and conclusions are dully drawn.
Resumo:
Electricity market players operating in a liberalized environment requires access to an adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tools must include ancillary market simulation. This paper proposes two different methods (Linear Programming and Genetic Algorithm approaches) for ancillary services dispatch. The methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case concerning the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is included in this paper.
Resumo:
Although it is always weak between RFID Tag and Terminal in focus of the security, there are no security skills in RFID Tag. Recently there are a lot of studying in order to protect it, but because it has some physical limitation of RFID, that is it should be low electric power and high speed, it is impossible to protect with the skills. At present, the methods of RFID security are using a security server, a security policy and security. One of them the most famous skill is the security module, then they has an authentication skill and an encryption skill. In this paper, we designed and implemented after modification original SEED into 8 Round and 64 bits for Tag.
Resumo:
This paper aims to present a multi-agent model for a simulation, whose goal is to help one specific participant of multi-criteria group decision making process.This model has five main intervenient types: the human participant, who is using the simulation and argumentation support system; the participant agents, one associated to the human participant and the others simulating the others human members of the decision meeting group; the directory agent; the proposal agents, representing the different alternatives for a decision (the alternatives are evaluated based on criteria); and the voting agent responsiblefor all voting machanisms.At this stage it is proposed a two phse algorithm. In the first phase each participantagent makes his own evaluation of the proposals under discussion, and the voting agent proposes a simulation of a voting process.In the second phase, after the dissemination of the voting results,each one ofthe partcipan agents will argue to convince the others to choose one of the possible alternatives. The arguments used to convince a specific participant are dependent on agent knowledge about that participant. This two-phase algorithm is applied iteratively.