4 resultados para car-movements

em Instituto Polit


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formula Student events gather engineering students, who compete, designing, building and racing single-seater cars. The team of ISEP is working on its first car that soon will take part in this competition. This work aims to analyze the current design’s chassis, focusing on suspension geometry and frame’s performance. After analyzing results of the tests planned suggestions, that can be taken into consideration during design process of next cars will be presented. As the car has not been tested yet this work can also be helpful to explain its performance on the track later.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poster presented in Redes de Veiculos nas sociedades do futuro (RVSF 2015). 3, Jun, 2015. Castelo Branco, Portugal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An adaptive control damping the forced vibration of a car while passing along a bumpy road is investigated. It is based on a simple kinematic description of the desired behavior of the damped system. A modified PID controller containing an approximation of Caputo’s fractional derivative suppresses the high-frequency components related to the bumps and dips, while the low frequency part of passing hills/valleys are strictly traced. Neither a complete dynamic model of the car nor ’a priori’ information on the surface of the road is needed. The adaptive control realizes this kinematic design in spite of the existence of dynamically coupled, excitable internal degrees of freedom. The method is investigated via Scicos-based simulation in the case of a paradigm. It was found that both adaptivity and fractional order derivatives are essential parts of the control that can keep the vibration of the load at bay without directly controlling its motion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previously we have presented a model for generating human-like arm and hand movements on an unimanual anthropomorphic robot involved in human-robot collaboration tasks. The present paper aims to extend our model in order to address the generation of human-like bimanual movement sequences which are challenged by scenarios cluttered with obstacles. Movement planning involves large scale nonlinear constrained optimization problems which are solved using the IPOPT solver. Simulation studies show that the model generates feasible and realistic hand trajectories for action sequences involving the two hands. The computational costs involved in the planning allow for real-time human robot-interaction. A qualitative analysis reveals that the movements of the robot exhibit basic characteristics of human movements.