72 resultados para Project-based system
em Instituto Polit
Resumo:
The operation of power systems in a Smart Grid (SG) context brings new opportunities to consumers as active players, in order to fully reach the SG advantages. In this context, concepts as smart homes or smart buildings are promising approaches to perform the optimization of the consumption, while reducing the electricity costs. This paper proposes an intelligent methodology to support the consumption optimization of an industrial consumer, which has a Combined Heat and Power (CHP) facility. A SCADA (Supervisory Control and Data Acquisition) system developed by the authors is used to support the implementation of the proposed methodology. An optimization algorithm implemented in the system in order to perform the determination of the optimal consumption and CHP levels in each instant, according to the Demand Response (DR) opportunities. The paper includes a case study with several scenarios of consumption and heat demand in the context of a DR event which specifies a maximum demand level for the consumer.
Resumo:
This paper presents a project consisting on the development of an Intelligent Tutoring System, for training and support concerning the development of electrical installation projects to be used by electrical engineers, technicians and students. One of the major goals of this project is to devise a teaching model based on Intelligent Tutoring techniques, considering not only academic knowledge but also other types of more empirical knowledge, able to achieve successfully the training of electrical installation design.
Resumo:
Proceedings of the 8th International Symposium on Project Approaches in Engineering Education (PAEE), Guimarães, 2016
Resumo:
Many of the most common human functions such as temporal and non-monotonic reasoning have not yet been fully mapped in developed systems, even though some theoretical breakthroughs have already been accomplished. This is mainly due to the inherent computational complexity of the theoretical approaches. In the particular area of fault diagnosis in power systems however, some systems which tried to solve the problem, have been deployed using methodologies such as production rule based expert systems, neural networks, recognition of chronicles, fuzzy expert systems, etc. SPARSE (from the Portuguese acronym, which means expert system for incident analysis and restoration support) was one of the developed systems and, in the sequence of its development, came the need to cope with incomplete and/or incorrect information as well as the traditional problems for power systems fault diagnosis based on SCADA (supervisory control and data acquisition) information retrieval, namely real-time operation, huge amounts of information, etc. This paper presents an architecture for a decision support system, which can solve the presented problems, using a symbiosis of the event calculus and the default reasoning rule based system paradigms, insuring soft real-time operation with incomplete, incorrect or domain incoherent information handling ability. A prototype implementation of this system is already at work in the control centre of the Portuguese Transmission Network.
Resumo:
Para dar resposta aos grandes avanços tecnológicos e, consequentemente, à postura mais exigente dos clientes, a empresa Francisco Parracho – Electrónica Industrial, Lda., que tem actividade no ramo dos elevadores, decidiu introduzir no mercado um controlador dedicado de ecrãs Liquid Crystal Display / Thin Film Transistor (LCD / TFT). O objectivo é substituir um sistema suportado por um computador, caracterizado pelas suas elevadas dimensões e custos, mas incontornável até à data, nomeadamente para resoluções de ecrã elevadas. E assim nasceu este trabalho. Com uma selecção criteriosa de todos os componentes e, principalmente, sem funcionalidades inúteis, obteve-se um sistema embebido com dimensões e custos bem mais reduzidos face ao seu opositor. O ecrã apontado para este projecto é um Thin Film Transistor – Liquid Crystal Display (TFT-LCD) da Sharp de 10.4” de qualidade industrial, com uma resolução de 800 x 600 píxeis a 18 bits por píxel. Para tal, foi escolhido um micro-controlador da ATMEL, um AVR de 32 bits que, entre outras características, possui um controlador LCD que suporta resoluções até 2048 x 2048 píxeis, de 1 a 24 bits por píxel. Atendendo ao facto deste produto ser inserido na área dos elevadores, as funcionalidades, quer a nível do hardware quer a nível do software, foram projectadas para este âmbito. Contudo, o conceito aqui exposto é adjacente a quaisquer outras áreas onde este produto se possa aplicar, até porque o software está feito para se tornar bem flexível. Com a ajuda de um kit de desenvolvimento, foram validados os drivers dos controladores e periféricos base deste projecto. De seguida, aplicou-se esse software numa placa de circuito impresso, elaborada no âmbito deste trabalho, para que fossem cumpridos todos os requisitos requeridos pela empresa patrocinadora: - Apresentação de imagens no ecrã consoante o piso; - Possibilidade de ter um texto horizontalmente deslizante;Indicação animada do sentido do elevador; - Representação do piso com deslizamento vertical; - Descrição sumária do directório de pisos também com deslizamento vertical; - Relógio digital; - Leitura dos conteúdos pretendidos através de um cartão SD/MMC; - Possibilidade de actualização dos conteúdos via USB flash drive.
Resumo:
Absolute positioning – the real time satellite based positioning technique that relies solely on global navigation satellite systems – lacks accuracy for several real time application domains. To provide increased positioning quality, ground or satellite based augmentation systems can be devised, depending on the extent of the area to cover. The underlying technique – multiple reference station differential positioning – can, in the case of ground systems, be further enhanced through the implementation of the virtual reference station concept. Our approach is a ground based system made of a small-sized network of three stations where the concept of virtual reference station was implemented. The stations provide code pseudorange corrections, which are combined using a measurement domain approach inversely proportional to the distance from source station to rover. All data links are established trough the Internet.
Resumo:
Interactive products are appealing objects in a technology-driven society and the offer in the market is wide and varied. Most of the existing interactive products only provide either light or sound experiences. Therefore, the goal of this project was to develop a product aimed for children combining both features. This project was developed by a team of four thirdyear students with different engineering backgrounds and nationalities during the European Project Semester at ISEP (EPS@ISEP) in 2012. This paper presents the process that led to the development of an interactive sound table that combines nine identical interaction blocks, a control block and a sound block. Each interaction block works independently and is composed of four light emitting diodes (LED) and one infrared (IR) sensor. The control is performed by an Arduino microcontroller and the sound block includes a music shield and a pair of loud speakers. A number of tests were carried out to assess whether the controller, IR sensors, LED, music shield and speakers work together properly and if the ensemble was a viable interactive light and sound device for children.
Resumo:
The European Project Semester at ISEP (EPS@ISEP) is a one semester project-based learning programme addressed to engineering students from diverse scientific backgrounds and nationalities. The students, organized in multicultural teams, are challenged to solve real world multidisciplinary problems, accounting for 30 ECTU. The EPS package, although focused on project development (20 ECTU), includes a series of complementary seminars aimed at fostering soft, project-related and engineering transversal skills (10 ECTU). This paper presents the study plan, resources, operation and results of the EPS@ISEP that was created in 2011 to apply the best engineering education practices and promote the internationalization of ISEP. The results show that the EPS@ISEP students acquire during one semester the scientific, technical and soft competences necessary to propose, design and implement a solution for a multidisciplinary problem.
Resumo:
Current engineering education challenges require approaches that promote scientific, technical, design and complementary skills while fostering autonomy, innovation and responsibility. The European Project Semester (EPS) at Instituto Superior de Engenharia do Porto (ISEP) (EPS@ISEP) is a one semester project-based learning programme (30 European Credit Transfer Units (ECTU)) for engineering students from diverse scientific backgrounds and nationalities that intends to address these goals. The students, organised in multidisciplinary and multicultural teams, are challenged to solve real multidisciplinary problems during one semester. The EPS package, although on project development (20 ECTU), includes a series of complementary seminars aimed at fostering soft, project-related and engineering transversal skills (10 ECTU). Hence, the students enrolled in this programme improve their transversal skills and learn, together and with the team of supervisors, subjects distinct from their core training. This paper presents the structure, implementation and results of the EPS@ISEP that was created in 2011 to apply the best engineering practices and promote internationalisation and engineering education innovation at ISEP.
Resumo:
The CDIO Initiative is an open innovative educational framework for engineering graduation degrees set in the context of Conceiving – Designing – Implementing – Operating real-world systems and products, which is embraced by a network of worldwide universities, the CDIO collaborators. A CDIO compliant engineering degree programme typically includes a capstone module on the final semester. Its purpose is to expose students to problems of a greater dimension and complexity than those faced throughout the degree programme as well as to put them in contact with the so-called real world, in opposition to the academic world. However, even in the CDIO context, there are barriers that separate engineering capstone students from the real world context of an engineering professional: (i) limited interaction with experts from diverse scientific areas; (ii) reduced cultural and scientific diversity within the teams; and (iii) lack of a project supportive framework to foster the complementary technical and non-technical skills required in an engineering professional. To address these shortcomings, we propose the adoption of the European Project Semester (EPS) framework, a one semester student centred international capstone programme offered by a group of European engineering schools (the EPS Providers) as part of their student exchange programme portfolio. The EPS package is organised around a central module – the EPS project – and a set of complementary supportive modules. Project proposals refer to open multidisciplinary real world problems and supervision becomes coaching. The students are organised in teams, grouping individuals from diverse academic backgrounds and nationalities, and each team is fully responsible for conducting its project. EPS complies with the CDIO directives on Design-Implement experiences and provides an integrated framework for undertaking capstone projects, which is focussed on multicultural and multidisciplinary teamwork, problem-solving, communication, creativity, leadership, entrepreneurship, ethical reasoning and global contextual analysis. As a result, we recommend the adoption of the EPS within CDIO capstone modules for the benefit of engineering students.
Resumo:
This paper proposes the development of biologically inspired robots as the capstone project of the European Project Semester (EPS) framework. EPS is a one semester student centred international programme offered by a group of European engineering schools (EPS Providers) as part of their student exchange programme portfolio. EPS is organized around a central module (the EPS project) and a set of complementary supportive modules. Project proposals refer to open multidisciplinary real world problems. Its purpose is to expose students to problems of a greater dimension and complexity than those faced throughout the degree programme as well as to put them in contact with the socalled real world, in opposition to the academic world. Students are organized in teams, grouping individuals from diverse academic backgrounds and nationalities, and each team is fully responsible for conducting its project. EPS provides an integrated framework for undertaking capstone projects, which is focused on multicultural and multidisciplinary teamwork, communication, problem-solving, creativity, leadership, entrepreneurship, ethical reasoning and global contextual analysis. The design and development of biologically inspired robots allows the students to fulfil the previously described requirements and objectives and, as a result, we recommend the adoption of these projects within the EPS project capstone module for the benefit of engineering students.
Resumo:
This paper presents the development of a fish-like robot called Bro-Fish. Bro-Fish aims to be an educational toy dedicated to teaching mechanics, programming and the physics of floating objects to youngsters. The underlying intention is to awaken the interest of children for technology, especially biomimetic (biologically inspired) approaches, in order to promote sustainability and raise the level of ecological awareness. The main focus of this project was to create a robot with carangiform locomotion and controllable swimming, providing the opportunity to customize parts and experiment with the physics of floating objects. Therefore, the locomotion principles of fishes and mechanisms developed in related projects were analysed. Inspired by this background knowledge, a prototype was designed and implemented. The main achievement is the new tail mechanism that propels the robot. The tail resembles the undulation motion of fish bodies and is actuated in an innovative way, triggered by an elegant movement of a rotating helicoidal. First experimental tests revealed the potential of the proposed methodology to effectively generate forward propulsion.
Resumo:
Signal-to-interference ratio (SIR) performance of a multiband orthogonal frequency division multiplexing ultra-wideband system with residual timing offset is investigated. To do so, an exact mathematical derivation of the SIR of this system is derived. It becomes obvious that, unlike a cyclic prefixing based system, a zero padding based system is sensitive to residual timing offset.
Resumo:
OCEANS, 2001. MTS/IEEE Conference and Exhibition (Volume:2 )
Resumo:
A control framework enabling the automated maneuvering of a Remotely Operate Vehicle (ROV) is presented. The control architecture is structured according to the principle of composition of vehicle motions from a minimal set of elemental maneuvers that are designed and verified independently. The principled approach is based on distributed hybrid systems techniques, and spans integrated design, simulation and implementation as the same model is used throughout. Hybrid systems control techniques are used to synthesize the elemental maneuvers and to design protocols, which coordinate the execution of elemental maneuvers within a complex maneuver. This work is part of the Inspection of Underwater Structures (IES) project whose main objective is the implementation of a ROV-based system for the inspection of underwater structures.