13 resultados para Orthogonal Frequency Division Multiplexing
em Instituto Polit
Resumo:
Signal-to-interference ratio (SIR) performance of a multiband orthogonal frequency division multiplexing ultra-wideband system with residual timing offset is investigated. To do so, an exact mathematical derivation of the SIR of this system is derived. It becomes obvious that, unlike a cyclic prefixing based system, a zero padding based system is sensitive to residual timing offset.
Resumo:
4th International Conference on Future Generation Communication Technologies (FGCT 2015), Luton, United Kingdom.
Resumo:
The last decade has witnessed a major shift towards the deployment of embedded applications on multi-core platforms. However, real-time applications have not been able to fully benefit from this transition, as the computational gains offered by multi-cores are often offset by performance degradation due to shared resources, such as main memory. To efficiently use multi-core platforms for real-time systems, it is hence essential to tightly bound the interference when accessing shared resources. Although there has been much recent work in this area, a remaining key problem is to address the diversity of memory arbiters in the analysis to make it applicable to a wide range of systems. This work handles diverse arbiters by proposing a general framework to compute the maximum interference caused by the shared memory bus and its impact on the execution time of the tasks running on the cores, considering different bus arbiters. Our novel approach clearly demarcates the arbiter-dependent and independent stages in the analysis of these upper bounds. The arbiter-dependent phase takes the arbiter and the task memory-traffic pattern as inputs and produces a model of the availability of the bus to a given task. Then, based on the availability of the bus, the arbiter-independent phase determines the worst-case request-release scenario that maximizes the interference experienced by the tasks due to the contention for the bus. We show that the framework addresses the diversity problem by applying it to a memory bus shared by a fixed-priority arbiter, a time-division multiplexing (TDM) arbiter, and an unspecified work-conserving arbiter using applications from the MediaBench test suite. We also experimentally evaluate the quality of the analysis by comparison with a state-of-the-art TDM analysis approach and consistently showing a considerable reduction in maximum interference.
Resumo:
Consumer-electronics systems are becoming increasingly complex as the number of integrated applications is growing. Some of these applications have real-time requirements, while other non-real-time applications only require good average performance. For cost-efficient design, contemporary platforms feature an increasing number of cores that share resources, such as memories and interconnects. However, resource sharing causes contention that must be resolved by a resource arbiter, such as Time-Division Multiplexing. A key challenge is to configure this arbiter to satisfy the bandwidth and latency requirements of the real-time applications, while maximizing the slack capacity to improve performance of their non-real-time counterparts. As this configuration problem is NP-hard, a sophisticated automated configuration method is required to avoid negatively impacting design time. The main contributions of this article are: 1) An optimal approach that takes an existing integer linear programming (ILP) model addressing the problem and wraps it in a branch-and-price framework to improve scalability. 2) A faster heuristic algorithm that typically provides near-optimal solutions. 3) An experimental evaluation that quantitatively compares the branch-and-price approach to the previously formulated ILP model and the proposed heuristic. 4) A case study of an HD video and graphics processing system that demonstrates the practical applicability of the approach.
Resumo:
Reactivation of telomerase has been implicated in human tumorigenesis, but the underlying mechanisms remain poorly understood. Here we report the presence of recurrent somatic mutations in the TERT promoter in cancers of the central nervous system (43%), bladder (59%), thyroid (follicular cell-derived, 10%) and skin (melanoma, 29%). In thyroid cancers, the presence of TERT promoter mutations (when occurring together with BRAF mutations) is significantly associated with higher TERT mRNA expression, and in glioblastoma we find a trend for increased telomerase expression in cases harbouring TERT promoter mutations. Both in thyroid cancers and glioblastoma, TERT promoter mutations are significantly associated with older age of the patients. Our results show that TERT promoter mutations are relatively frequent in specific types of human cancers, where they lead to enhanced expression of telomerase.
Resumo:
An analytical method using microwave-assisted extraction (MAE) and liquid chromatography (LC) with fluorescence detection (FD) for the determination of ochratoxin A (OTA) in bread samples is described. A 24 orthogonal composite design coupled with response surface methodology was used to study the influence of MAE parameters (extraction time, temperature, solvent volume, and stirring speed) in order to maximize OTA recovery. The optimized MAE conditions were the following: 25 mL of acetonitrile, 10 min of extraction, at 80 °C, and maximum stirring speed. Validation of the overall methodology was performed by spiking assays at five levels (0.1–3.00 ng/g). The quantification limit was 0.005 ng/g. The established method was then applied to 64 bread samples (wheat, maize, and wheat/maize bread) collected in Oporto region (Northern Portugal). OTAwas detected in 84 % of the samples with a maximum value of 2.87 ng/g below the European maximum limit established for OTA in cereal products of 3 ng/g.
Resumo:
Synchronization is a challenging and important issue for time-sensitive Wireless Sensor Networks (WSN) since it requires a mutual spatiotemporal coordination between the nodes. In that concern, the IEEE 802.15.4/ZigBee protocols embody promising technologies for WSNs, but are still ambiguous on how to efficiently build synchronized multiple-cluster networks, specifically for the case of cluster-tree topologies. In fact, the current IEEE 802.15.4/ZigBee specifications restrict the synchronization to beacon-enabled (by the generation of periodic beacon frames) star networks, while they support multi-hop networking in mesh topologies, but with no synchronization. Even though both specifications mention the possible use of cluster-tree topologies, which combine multi-hop and synchronization features, the description on how to effectively construct such a network topology is missing. This paper tackles this issue by unveiling the ambiguities regarding the use of the cluster-tree topology and proposing a synchronization mechanism based on Time Division Beacon Scheduling (TDBS) to build cluster-tree WSNs. In addition, we propose a methodology for efficiently managing duty-cycles in every cluster, ensuring the fairest use of bandwidth resources. The feasibility of the TDBS mechanism is clearly demonstrated through an experimental test-bed based on our open-source implementation of the IEEE 802.15.4/ZigBee protocols.
Resumo:
While the IEEE 802.15.4/Zigbee protocol stack is being considered as a promising technology for low-cost low-power Wireless Sensor Networks (WSNs), several issues in the standard specifications are still open. One of those ambiguous issues is how to build a synchronized multi-hop cluster-tree network, which is quite suitable for ensuring QoS support in WSNs. In fact, the current IEEE 802.15.4/Zigbee specifications restrict the synchronization in the beacon-enabled mode (by the generation of periodic beacon frames) to star-based networks, while it supports multi-hop networking using the peer-to-peer mesh topology, but with no synchronization. Even though both specifications mention the possible use of cluster-tree topologies, which combine multihop and synchronization features, the description on how to effectively construct such a network topology is missing. This paper tackles this problem, unveils the ambiguities regarding the use of the cluster-tree topology and proposes a synchronization mechanism based on Time Division Beacon Scheduling to construct cluster-tree WSNs. We also propose a methodology for an efficient duty cycle management in each router (cluster-head) of a cluster-tree WSN that ensures the fairest use of bandwidth resources. The feasibility of the proposal is clearly demonstrated through an experimental test bed based on our own implementation of the IEEE 802.15.4/Zigbee protocol.
Resumo:
This technical report describes the implementation details of the Time Division Beacon Scheduling Approach in IEEE 802.15.4/ZigBee Cluster-Tree Networks. In this technical report we describe the implementation details, focusing on some aspects of the ZigBee Network Layer and the Time Division Beacon Scheduling mechanism. This report demonstrates the feasibility of our approach based on the evaluation of the experimental results. We also present an overview of the ZigBee address and tree-routing scheme.
Fractional derivatives: probability interpretation and frequency response of rational approximations
Resumo:
The theory of fractional calculus (FC) is a useful mathematical tool in many applied sciences. Nevertheless, only in the last decades researchers were motivated for the adoption of the FC concepts. There are several reasons for this state of affairs, namely the co-existence of different definitions and interpretations, and the necessity of approximation methods for the real time calculation of fractional derivatives (FDs). In a first part, this paper introduces a probabilistic interpretation of the fractional derivative based on the Grünwald-Letnikov definition. In a second part, the calculation of fractional derivatives through Padé fraction approximations is analyzed. It is observed that the probabilistic interpretation and the frequency response of fraction approximations of FDs reveal a clear correlation between both concepts.
Resumo:
Somatic mutations in the promoter region of telomerase reverse transcriptase (TERT) gene, mainly at positions c.-124 and c.-146 bp, are frequent in several human cancers; yet its presence in gastrointestinal stromal tumor (GIST) has not been reported to date. Herein, we searched for the presence and clinicopathological association of TERT promoter mutations in genomic DNA from 130 bona fide GISTs. We found TERT promoter mutations in 3.8% (5/130) of GISTs. The c.-124C>T mutation was the most common event, present in 2.3% (3/130), and the c.-146C>T mutation in 1.5% (2/130) of GISTs. No significant association was observed between TERT promoter mutation and patient's clinicopathological features. The present study establishes the low frequency (4%) of TERT promoter mutations in GISTs. Further studies are required to confirm our findings and to elucidate the hypothetical biological and clinical impact of TERT promoter mutation in GIST pathogenesis.
Resumo:
Collecting and transporting solid waste is a constant problem for municipalities and populations in general. Waste management should take into account the preservation of the environment and the reduction of costs. The goal with this paper is to address a real-life solid waste problem. The case reveals some general and specific characteristics which are not rare, but are not widely addressed in the literature. Furthermore, new methods and models to deal with sectorization and routing are introduced, which can be extended to other applications. Sectorization and routing are tackled following a two-phase approach. In the first phase, a new method is described for sectorization based on electromagnetism and Coulomb’s Law. The second phase addresses the routing problems in each sector. The paper addresses not only territorial division, but also the frequency with which waste is collected, which is a critical issue in these types of applications. Special characteristics related to the number and type of deposition points were also a motivation for this work. A new model for a Mixed Capacitated Arc Routing Problem with Limited Multi-Landfills is proposed and tested in real instances. The computational results achieved confirm the effectiveness of the entire approach.
Resumo:
For efficient planning of waste collection routing, large municipalities may be partitioned into convenient sectors. The real case under consideration is the municipality of Monção, in Portugal. Waste collection involves more than 1600 containers over an area of 220 km2 and a population of around 20,000 inhabitants. This is mostly a rural area where the population is distributed in small villages around the 33 boroughs centres (freguesia) that constitute the municipality. In most freguesias, waste collection is usually conducted 3 times a week. However, there are situations in which the same collection is done every day. The case reveals some general and specific characteristics which are not rare, but are not widely addressed in the literature. Furthermore, new methods and models to deal with sectorization and routing are introduced, which can be extended to other applications. Sectorization and routing are tackled following a three-phase approach. The first phase, which is the main concern of the presentation, introduces a new method for sectorization inspired by Electromagnetism and Coulomb’s Law. The matter is not only about territorial division, but also the frequency of waste collection, which is a critical issue in these types of applications. Special characteristics related to the number and type of deposition points were also a motivation for this work. The second phase addresses the routing problems in each sector: new Mixed Capacitated Arc Routing with Limited Multi-Landfills models will be presented. The last phase integrates Sectoring and Routing. Computational results confirm the effectiveness of the entire novel approach.