81 resultados para Computational Evaluation
em Instituto Polit
Resumo:
In this work, a comparative study on different drill point geometries and feed rate for composite laminates drilling is presented. For this goal, thrust force monitoring during drilling, hole wall roughness measurement and delamination extension assessment after drilling is accomplished. Delamination is evaluated using enhanced radiography combined with a dedicated computational platform that integrates algorithms of image processing and analysis. An experimental procedure was planned and consequences were evaluated. Results show that a cautious combination of the factors involved, like drill tip geometry or feed rate, can promote the reduction of delamination damage.
Resumo:
Drilling of carbon fibre/epoxy laminates is usually carried out using standard drills. However, it is necessary to adapt the processes and/or tooling as the risk of delamination, or other damages, is high. These problems can affect mechanical properties of produced parts, therefore, lower reliability. In this paper, four different drills – three commercial and a special step (prototype) – are compared in terms of thrust force during drilling and delamination. In order to evaluate damage, enhanced radiography is applied. The resulting images were then computational processed using a previously developed image processing and analysis platform. Results show that the prototype drill had encouraging results in terms of maximum thrust force and delamination reduction. Furthermore, it is possible to state that a correct choice of drill geometry, particularly the use of a pilot hole, a conservative cutting speed – 53 m/min – and a low feed rate – 0.025 mm/rev – can help to prevent delamination.
Resumo:
Buildings account for 40% of total energy consumption in the European Union. The reduction of energy consumption in the buildings sector constitute an important measure needed to reduce the Union's energy dependency and greenhouse gas emissions. The Portuguese legislation incorporate this principles in order to regulate the energy performance of buildings. This energy performance should be accompanied by good conditions for the occupants of the buildings. According to EN 15251 (2007) the four factors that affect the occupant comfort in the buildings are: Indoor Air Quality (IAQ), thermal comfort, acoustics and lighting. Ventilation directly affects all except the lighting, so it is crucial to understand the performance of it. The ventilation efficiency concept therefore earn significance, because it is an attempt to quantify a parameter that can easily distinguish the different options for air diffusion in the spaces. The two indicators most internationally accepted are the Air Change Efficiency (ACE) and the Contaminant Removal Effectiveness (CRE). Nowadays with the developed of the Computational Fluid Dynamics (CFD) the behaviour of ventilation can be more easily predicted. Thirteen strategies of air diffusion were measured in a test chamber through the application of the tracer gas method, with the objective to validate the calculation by the MicroFlo module of the IES-VE software for this two indicators. The main conclusions from this work were: that the values of the numerical simulations are in agreement with experimental measurements; the value of the CRE is more dependent of the position of the contamination source, that the strategy used for the air diffusion; the ACE indicator is more appropriate for quantifying the quality of the air diffusion; the solutions to be adopted, to maximize the ventilation efficiency should be, the schemes that operate with low speeds of supply air and small differences between supply air temperature and the room temperature.
Resumo:
This study attempted to evaluate the influence of using an unstable shoe in muscle re-cruitment strategies and center of pressure (CoP) displacement after the application of an external perturba-tion. Fourteen healthy female subjects participated in this study. The electromyographic activity of medial ga-strocnemius, tibialis anterior, rectus femoris, biceps femoris, rectus abdominis and erector spinae muscles and the kinetic values to calculate the CoP were collected and analyzed after the application of an external pertur-bation with the subject in standing position, with no shoes and using unstable footwear. The results showed increased in medial gastrocnemius activity during the first compensatory postural adjustments and late com-pensatory postural adjustments when using an unstable shoe. There were no differences in standard deviation and maximum peak of anteroposterior displacement of CoP between measurements. From the experimental findings, one can conclude that the use of an unstable shoe leads to an increase in gastrocnemius activity with no increase in CoP displacement following an unexpected external perturbation.
Resumo:
Power system planning, control and operation require an adequate use of existing resources as to increase system efficiency. The use of optimal solutions in power systems allows huge savings stressing the need of adequate optimization and control methods. These must be able to solve the envisaged optimization problems in time scales compatible with operational requirements. Power systems are complex, uncertain and changing environments that make the use of traditional optimization methodologies impracticable in most real situations. Computational intelligence methods present good characteristics to address this kind of problems and have already proved to be efficient for very diverse power system optimization problems. Evolutionary computation, fuzzy systems, swarm intelligence, artificial immune systems, neural networks, and hybrid approaches are presently seen as the most adequate methodologies to address several planning, control and operation problems in power systems. Future power systems, with intensive use of distributed generation and electricity market liberalization increase power systems complexity and bring huge challenges to the forefront of the power industry. Decentralized intelligence and decision making requires more effective optimization and control techniques techniques so that the involved players can make the most adequate use of existing resources in the new context. The application of computational intelligence methods to deal with several problems of future power systems is presented in this chapter. Four different applications are presented to illustrate the promises of computational intelligence, and illustrate their potentials.
Resumo:
The Developmental Dysplasia of the Hip (DDH), also know as Congenital Dislocation of the Hip, is common in infants and children and may persist into adulthood. The radiographic interpretation is highly conditioned by appropriate patient positioning and image quality criteria. The main goal of this study is to demonstrate the value of radiographic evaluation of DDH. Through the retrospective analysis of 65 radiographs of the hips, only 2 (3.1%) female patients with 1-2 years of age presented radiographic findings of DDH. The inappropriate field size and the improper placement and size of the gonadal shields, were the most common errors observed.
Resumo:
This paper starts with the analysis of the unusual inherence mechanism, from two aspects: accumulating and human error. We put forward twelve factors affected the decision of the emergency treatment plan in practice and summarized the evaluation index system combining with literature data. Then we screened out eighteen representative indicators by used the FDM expert questionnaire in the first phase. Hereafter, we calculated the weight of evaluation index and sorted them by the FAHP expert questionnaire, and came up with the frame of the evaluation rule by combined with the experience. In the end, the evaluation principles are concluded.
Resumo:
In recent years Ionic Liquids (ILs) are being applied in life sciences. ILs are being produce with active pharmaceutical drugs (API) as they can reduce polymorphism and drug solubility problems [1] Also ILs are being applied as a drug delivery device in innovative therapies What is appealing in ILs is the ILs building up platform, the counter-ion can be carefully chosen in order to avoid undesirable side effects or to give innovative therapies in which two active ions are paired. This work shows ILs based on ampicillin (an anti-bacterial agent) and ILs based on Amphotericin B. Also we show studies that indicate that ILs based on Ampicillin could reverse resistance in some bacteria. The ILs produced in this work were synthetized by the neutralization method described in Ferraz et. al. [2] Ampicillin anion was combined with the following organic cations 1-ethyl-3-methylimidazolium, [EMIM]; 1-hydroxy-ethyl-3-methylimidazolium, [C2OHMIM]; choline, [cholin]; tetraethylammonium, [TEA]; cetylpyridinium, [C16pyr] and trihexyltetradecylphosphonium, [P6,6,6,14]. Amphotericin B was combined with [C16pyr], [cholin] and 1-metohyethyl-3-methylimidazolium, [C3OMIM]. The ILs-APIs based on ampicillin[2] were tested against sensitive Gram-negative bacteria Escherichia coli ATCC 25922 and Klebsiella pneumonia (clinical isolated), as well as on Gram positive Staphylococcus Aureus ATCC 25923, Staphylococcus epidermidis and Enterococcus faecalis. The arising resistance developed by bacteria to antibiotics is a serious public health threat and needs new and urgent measures. We study the bacterial activity of these compounds against a panel of resistant bacteria (clinical isolated strains): E. coli CTX M9, E. coli TEM CTX M9, E. coli TEM1, E. coli CTX M2, E. coli AmpC Mox2. In this work we demonstrate that is possible to produce ILs from anti-bacterial and anti-fungal compounds. We show here that the new ILs can reverse the bacteria resistance. With the careful choice of the organic cation, it is possible to create important biological and physic-chemical properties. This work also shows that the ion-pair is fundamental in ampicillin mechanism of action.
Resumo:
Knowledge is central to the modern economy and society. Indeed, the knowledge society has transformed the concept of knowledge and is more and more aware of the need to overcome the lack of knowledge when has to make options or address its problems and dilemmas. One’s knowledge is less based on exact facts and more on hypotheses, perceptions or indications. Even when we use new computational artefacts and novel methodologies for problem solving, like the use of Group Decision Support Systems (GDSSs), the question of incomplete information is in most of the situations marginalized. On the other hand, common sense tells us that when a decision is made it is impossible to have a perception of all the information involved and the nature of its intrinsic quality. Therefore, something has to be made in terms of the information available and the process of its evaluation. It is under this framework that a Multi-valued Extended Logic Programming language will be used for knowledge representation and reasoning, leading to a model that embodies the Quality-of-Information (QoI) and its quantification, along the several stages of the decision-making process. In this way, it is possible to provide a measure of the value of the QoI that supports the decision itself. This model will be here presented in the context of a GDSS for VirtualECare, a system aimed at sustaining online healthcare services.
Resumo:
In this paper, it was evaluated the total antioxidant capacity (TAC) of beverages using an electrochemical biosensor. The biosensor consisted on the purine base (guanine or adenine) electro-immobilization on a glassy carbon electrode surface (GCE). Purine base damage was induced by the hydroxyl radical generated by Fenton-type reaction. Five antioxidants were applied to counteract the deleterious effects of the hydroxyl radical. The antioxidants used were ascorbic acid, gallic acid, caffeic acid, coumaric acid and resveratrol. These antioxidants have the ability to scavenger the hydroxyl radical and protect the guanine and adenine immobilized on the GCE surface. The interaction carried out between the purinebase immobilized and the free radical in the absence and presence of antioxidants was evaluated by means of changes in the guanine and adenine anodic peak obtained by square wave voltammetry (SWV). The results demonstrated that the purine-biosensors are suitable for rapid assessment of TAC in beverages.
Resumo:
Introduction: In the XXI Century ’s Society the scientific investigation process has been growing steadily , and the field of the pharmaceutical research is one of the most enthusiastic and relevant . Here, it is very important to correlate observed functional alterations with possibly modified drug bio distribution patterns . Cancer, inflammation and inf ection are processes that induce many molecular intermediates like cytokines, chemokines and other chemical complexes that can alter the pharmacokinetics of many drugs. One cause of such changes is thought to be the modulator action of these complexes in t he P - Glyco p rotein activity, because they can act like inducers/inhibitors of MDR - 1 expression. This protein results from the expression of MDR - 1 gene, and acts as an ATP energy - dependent efflux pump, with their substrates including many drugs , like antiretrovirals, anticancers, anti - infectives, immunosuppressants, steroids or opioids . Objectives: Because of the lack of methods to provide helpful information in the investigation of in vivo molecular changes in Pgp activity during infection/infl ammation processes, and its value in the explanation of the altered drug pharmacokinetic, this paper want to evaluate the potential utility of 99m Tc - Sestamibi scintigraphy during this kind of health sciences investigation. Although the a im is indeed to create a technique to the in vivo study of Pgp activity, this preliminary Project only reaches the in vitro study phase, assumed as the first step in a n evaluation period for a new tool development. Materials and Methods: For that reason , we are performing in vitro studies of influx and efflux of 99m Tc - Sestamibi ( that is a substrate of Pgp) in hepatocytes cell line (HepG2). We are interested in clarify the cellular behavior of this radiopharmaceutical in Lipopolysaccharide(LPS) stimulated cells ( well known in vitro model of inflammation) to possibly approve this methodology. To validate the results, the Pgp expression will be finally evaluated using Western Blot technique. Results: Up to this moment , we still don’t have the final results, but we have already enough data to let us believe that LPS stimulation induce a downregulation of MDR - 1, and consequently Pgp, which could conduce to a prolonged retention of 99m Tc - Sestamibi in the inflamed cells . Conclusions: If and when this methodology demonstrate the promising results we expect, one will be able to con clude that Nuclear Medicine is an important tool to help evidence based research also on this specific field .
Resumo:
In order to overcome the problems associated with low water solubility, and consequently low bioavailability of active pharmaceutical ingredients (APIs), herein we explore a modular ionic liquid synthetic strategy for improved APIs. Ionic liquids containing l-ampicillin as active pharmaceutical ingredient anion were prepared using the methodology developed in our previous work, using organic cations selected from substituted ammonium, phosphonium, pyridinium and methylimidazolium salts, with the intent of enhancing the solubility and bioavailability of l-ampicillin forms. In order to evaluate important properties of the synthesized API-ILs, the water solubility at 25 °C and 37 °C (body temperature) as well as octanol–water partition coefficients (Kow's) and HDPC micelles partition at 25 °C were measured. Critical micelle concentrations (CMC's) in water at 25 °C and 37 °C of the pharmaceutical ionic liquids bearing cations with surfactant properties were also determined from ionic conductivity measurements.
Resumo:
A quinoxalina e seus derivativos são uma importante classe de compostos heterocíclicos, onde os elementos N, S e O substituem átomos de carbono no anel. A fórmula molecular da quinoxalina é C8H6N2, formada por dois anéis aromáticos, benzeno e pirazina. É rara em estado natural, mas a sua síntese é de fácil execução. Modificações na estrutura da quinoxalina proporcionam uma grande variedade de compostos e actividades, tais como actividades antimicrobiana, antiparasitária, antidiabética, antiproliferativa, anti-inflamatória, anticancerígena, antiglaucoma, antidepressiva apresentando antagonismo do receptor AMPA. Estes compostos também são importantes no campo industrial devido, por exemplo, ao seu poder na inibição da corrosão do metal. A química computacional, ramo natural da química teórica é um método bem desenvolvido, utilizado para representar estruturas moleculares, simulando o seu comportamento com as equações da física quântica e clássica. Existe no mercado uma grande variedade de ferramentas informaticas utilizadas na química computacional, que permitem o cálculo de energias, geometrias, frequências vibracionais, estados de transição, vias de reação, estados excitados e uma variedade de propriedades baseadas em várias funções de onda não correlacionadas e correlacionadas. Nesta medida, a sua aplicação ao estudo das quinoxalinas é importante para a determinação das suas características químicas, permitindo uma análise mais completa, em menos tempo, e com menos custos.