124 resultados para Bio-inspired optimization techniques
em Instituto Polit
Resumo:
A novel approach to scheduling resolution by combining Autonomic Computing (AC), Multi-Agent Systems (MAS), Case-based Reasoning (CBR), and Bio-Inspired Optimization Techniques (BIT) will be described. AC has emerged as a paradigm aiming at incorporating applications with a management structure similar to the central nervous system. The main intentions are to improve resource utilization and service quality. In this paper we envisage the use of MAS paradigm for supporting dynamic and distributed scheduling in Manufacturing Systems with AC properties, in order to reduce the complexity of managing manufacturing systems and human interference. The proposed CBR based Intelligent Scheduling System was evaluated under different dynamic manufacturing scenarios.
Resumo:
Scheduling is a critical function that is present throughout many industries and applications. A great need exists for developing scheduling approaches that can be applied to a number of different scheduling problems with significant impact on performance of business organizations. A challenge is emerging in the design of scheduling support systems for manufacturing environments where dynamic adaptation and optimization become increasingly important. In this paper, we describe a Self-Optimizing Mechanism for Scheduling System through Nature Inspired Optimization Techniques (NIT).
Resumo:
To comply with natural gas demand growth patterns and Europe´s import dependency, the gas industry needs to organize an efficient upstream infrastructure. The best location of Gas Supply Units – GSUs and the alternative transportation mode – by phisical or virtual pipelines, are the key of a successful industry. In this work we study the optimal location of GSUs, as well as determining the most efficient allocation from gas loads to sources, selecting the best transportation mode, observing specific technical restrictions and minimizing system total costs. For the location of GSUs on system we use the P-median problem, for assigning gas demands nodes to source facilities we use the classical transportation problem. The developed model is an optimisation-based approach, based on a Lagrangean heuristic, using Lagrangean relaxation for P-median problems – Simple Lagrangean Heuristic. The solution of this heuristic can be improved by adding a local search procedure - the Lagrangean Reallocation Heuristic. These two heuristics, Simple Lagrangean and Lagrangean Reallocation, were tested on a realistic network - the primary Iberian natural gas network, organized with 65 nodes, connected by physical and virtual pipelines. Computational results are presented for both approaches, showing the location gas sources and allocation loads arrangement, system total costs and gas transportation mode.
Resumo:
Important research effort has been devoted to the topic of optimal planning of distribution systems. The non linear nature of the system, the need to consider a large number of scenarios and the increasing necessity to deal with uncertainties make optimal planning in distribution systems a difficult task. Heuristic techniques approaches have been proposed to deal with these issues, overcoming some of the inherent difficulties of classic methodologies. This paper considers several methodologies used to address planning problems of electrical power distribution networks, namely mixedinteger linear programming (MILP), ant colony algorithms (AC), genetic algorithms (GA), tabu search (TS), branch exchange (BE), simulated annealing (SA) and the Bender´s decomposition deterministic non-linear optimization technique (BD). Adequacy of theses techniques to deal with uncertainties is discussed. The behaviour of each optimization technique is compared from the point of view of the obtained solution and of the methodology performance. The paper presents results of the application of these optimization techniques to a real case of a 10-kV electrical distribution system with 201 nodes that feeds an urban area.
Resumo:
Este artigo aborda o problema da parametrização de Técnicas de Optimização Inspiradas na Biologia (BIT - Biological Inspired Optimization Techniques), também conhecidas como Meta-heurísticas, considerando a importância que estas técnicas têm na resolução de situações de mundo real, sujeitas a perturbações externas. É proposto um módulo de aprendizagem com o objectivo de permitir que um Sistema Multi-Agente (SMA) para Escalonamento seleccione automaticamente uma Metaheurística e escolha a parametrização a usar no processo de optimização. Para o módulo de aprendizagem foi usado o Raciocínio baseado em Casos (RBC), permitindo ao sistema aprender a partir da experiência acumulada na resolução de problemas similares. Através da análise dos resultados obtidos é possível concluir acerca das vantagens da sua utilização.
Resumo:
This paper addresses the problem of Biological Inspired Optimization Techniques (BIT) parameterization, considering the importance of this issue in the design of BIT especially when considering real world situations, subject to external perturbations. A learning module with the objective to permit a Multi-Agent Scheduling System to automatically select a Meta-heuristic and its parameterization to use in the optimization process is proposed. For the learning process, Casebased Reasoning was used, allowing the system to learn from experience, in the resolution of similar problems. Analyzing the obtained results we conclude about the advantages of its use.
Resumo:
We describe a novel approach to scheduling resolution by combining Autonomic Computing (AC), Multi-Agent Systems (MAS) and Nature Inspired Optimization Techniques (NIT). Autonomic Computing has emerged as paradigm aiming at embedding applications with a management structure similar to a central nervous system. A natural Autonomic Computing evolution in relation to Current Computing is to provide systems with Self-Managing ability with a minimum human interference. In this paper we envisage the use of Multi-Agent Systems paradigm for supporting dynamic and distributed scheduling in Manufacturing Systems with Autonomic properties, in order to reduce the complexity of managing systems and human interference. Additionally, we consider the resolution of realistic problems. The scheduling of a Cutting and Treatment Stainless Steel Sheet Line will be evaluated. Results show that proposed approach has advantages when compared with other scheduling systems.
Resumo:
With advancement in computer science and information technology, computing systems are becoming increasingly more complex with an increasing number of heterogeneous components. They are thus becoming more difficult to monitor, manage, and maintain. This process has been well known as labor intensive and error prone. In addition, traditional approaches for system management are difficult to keep up with the rapidly changing environments. There is a need for automatic and efficient approaches to monitor and manage complex computing systems. In this paper, we propose an innovative framework for scheduling system management by combining Autonomic Computing (AC) paradigm, Multi-Agent Systems (MAS) and Nature Inspired Optimization Techniques (NIT). Additionally, we consider the resolution of realistic problems. The scheduling of a Cutting and Treatment Stainless Steel Sheet Line will be evaluated. Results show that proposed approach has advantages when compared with other scheduling systems
Resumo:
Swarm Intelligence (SI) is a growing research field of Artificial Intelligence (AI). SI is the general term for several computational techniques which use ideas and get inspiration from the social behaviours of insects and of other animals. This paper presents hybridization and combination of different AI approaches, like Bio-Inspired Techniques (BIT), Multi-Agent systems (MAS) and Machine Learning Techniques (ML T). The resulting system is applied to the problem of jobs scheduling to machines on dynamic manufacturing environments.
Resumo:
This paper presents a negotiation mechanism for Dynamic Scheduling based on Swarm Intelligence (SI). Under the new negotiation mechanism, agents must compete to obtain a global schedule. SI is the general term for several computational techniques which use ideas and get inspiration from the social behaviors of insects and other animals. This work is concerned with negotiation, the process through which multiple selfinterested agents can reach agreement over the exchange of operations on competitive resources.
Resumo:
A geração de trajectórias de robôs em tempo real é uma tarefa muito complexa, não
existindo ainda um algoritmo que a permita resolver de forma eficaz. De facto, há
controladores eficientes para trajectórias previamente definidas, todavia, a adaptação a
variações imprevisíveis, como sendo terrenos irregulares ou obstáculos, constitui ainda um
problema em aberto na geração de trajectórias em tempo real de robôs.
Neste trabalho apresentam-se modelos de geradores centrais de padrões de locomoção
(CPGs), inspirados na biologia, que geram os ritmos locomotores num robô quadrúpede.
Os CPGs são modelados matematicamente por sistemas acoplados de células (ou
neurónios), sendo a dinâmica de cada célula dada por um sistema de equações diferenciais
ordinárias não lineares. Assume-se que as trajectórias dos robôs são constituídas por esta
parte rítmica e por uma parte discreta. A parte discreta pode ser embebida na parte rítmica,
(a.1) como um offset ou (a.2) adicionada às expressões rítmicas, ou (b) pode ser calculada
independentemente e adicionada exactamente antes do envio dos sinais para as articulações
do robô. A parte discreta permite inserir no passo locomotor uma perturbação, que poderá
estar associada à locomoção em terrenos irregulares ou à existência de obstáculos na
trajectória do robô. Para se proceder á análise do sistema com parte discreta, será variado o
parâmetro g. O parâmetro g, presente nas equações da parte discreta, representa o offset do
sinal após a inclusão da parte discreta.
Revê-se a teoria de bifurcação e simetria que permite a classificação das soluções
periódicas produzidas pelos modelos de CPGs com passos locomotores quadrúpedes. Nas
simulações numéricas, usam-se as equações de Morris-Lecar e o oscilador de Hopf como
modelos da dinâmica interna de cada célula para a parte rítmica. A parte discreta é
modelada por um sistema inspirado no modelo VITE. Medem-se a amplitude e a
frequência de dois passos locomotores para variação do parâmetro g, no intervalo [-5;5].
Consideram-se duas formas distintas de incluir a parte discreta na parte rítmica: (a) como
um (a.1) offset ou (a.2) somada nas expressões que modelam a parte rítmica, e (b) somada
ao sinal da parte rítmica antes de ser enviado às articulações do robô. No caso (a.1),
considerando o oscilador de Hopf como dinâmica interna das células, verifica-se que a amplitude e frequência se mantêm constantes para -5
Resumo:
One of the most well-known bio-inspired algorithms used in optimization problems is the particle swarm optimization (PSO), which basically consists on a machinelearning technique loosely inspired by birds flocking in search of food. More specifically, it consists of a number of particles that collectively move on the search space in search of the global optimum. The Darwinian particle swarm optimization (DPSO) is an evolutionary algorithm that extends the PSO using natural selection, or survival of the fittest, to enhance the ability to escape from local optima. This paper firstly presents a survey on PSO algorithms mainly focusing on the DPSO. Afterward, a method for controlling the convergence rate of the DPSO using fractional calculus (FC) concepts is proposed. The fractional-order optimization algorithm, denoted as FO-DPSO, is tested using several well-known functions, and the relationship between the fractional-order velocity and the convergence of the algorithm is observed. Moreover, experimental results show that the FO-DPSO significantly outperforms the previously presented FO-PSO.
Resumo:
This paper presents MASCEM - a multi-agent based electricity market simulator. MASCEM uses game theory, machine learning techniques, scenario analysis and optimization techniques to model market agents and to provide them with decision-support. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Players (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. The paper details some of the most important aspects considered in VPP formation and in the aggregation of new producers and includes a case study based on real data.
Resumo:
The management of energy resources for islanded operation is of crucial importance for the successful use of renewable energy sources. A Virtual Power Producer (VPP) can optimally operate the resources taking into account the maintenance, operation and load control considering all the involved cost. This paper presents the methodology approach to formulate and solve the problem of determining the optimal resource allocation applied to a real case study in Budapest Tech’s. The problem is formulated as a mixed-integer linear programming model (MILP) and solved by a deterministic optimization technique CPLEX-based implemented in General Algebraic Modeling Systems (GAMS). The problem has also been solved by Evolutionary Particle Swarm Optimization (EPSO). The obtained results are presented and compared.
Resumo:
This paper presents a Unit Commitment model with reactive power compensation that has been solved by Genetic Algorithm (GA) optimization techniques. The GA has been developed a computational tools programmed/coded in MATLAB. The main objective is to find the best generations scheduling whose active power losses are minimal and the reactive power to be compensated, subjected to the power system technical constraints. Those are: full AC power flow equations, active and reactive power generation constraints. All constraints that have been represented in the objective function are weighted with a penalty factors. The IEEE 14-bus system has been used as test case to demonstrate the effectiveness of the proposed algorithm. Results and conclusions are dully drawn.