3 resultados para weights of ideals

em Instituto Politécnico do Porto, Portugal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fingerprinting is an indoor location technique, based on wireless networks, where data stored during the offline phase is compared with data collected by the mobile device during the online phase. In most of the real-life scenarios, the mobile node used throughout the offline phase is different from the mobile nodes that will be used during the online phase. This means that there might be very significant differences between the Received Signal Strength values acquired by the mobile node and the ones stored in the Fingerprinting Map. As a consequence, this difference between RSS values might contribute to increase the location estimation error. One possible solution to minimize these differences is to adapt the RSS values, acquired during the online phase, before sending them to the Location Estimation Algorithm. Also the internal parameters of the Location Estimation Algorithms, for example the weights of the Weighted k-Nearest Neighbour, might need to be tuned for every type of terminal. This paper focuses both approaches, using Direct Search optimization methods to adapt the Received Signal Strength and to tune the Location Estimation Algorithm parameters. As a result it was possible to decrease the location estimation error originally obtained without any calibration procedure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper presents a study on business micro-location behaviour as well as corresponding factors of influence, conducted in two metropolitan areas, Bucharest-Ilfov (Romania) and Greater Porto (Portugal). By business micro-location we refer to a specific site such as a building or facility, accommodating a business within a small, compact geographical area (e.g. metropolitan area). At this geographical scale, the macroeconomic layer factors were excluded, applicable when discern between regions or countries. The factors derived from location theory and previous empirical studies were surveyed, completing a cross-sectional analysis in order to find out the specific weights of the location factors and preferences, by region and by industry. Based on already established firms’ feedback on location, the specific weights were granted by each industry to the main location factors, types of areas, and types of accommodation facilities. The authors also suggested a model to integrate these results into a Geographical Information System (GIS).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neste documento, são investigados vários métodos usados na inteligência artificial, com o objetivo de obter previsões precisas da evolução dos mercados financeiros. O uso de ferramentas lineares como os modelos AR, MA, ARMA e GARCH têm muitas limitações, pois torna-se muito difícil adaptá-los às não linearidades dos fenómenos que ocorrem nos mercados. Pelas razões anteriormente referidas, os algoritmos como as redes neuronais dinâmicas (TDNN, NARX e ESN), mostram uma maior capacidade de adaptação a estas não linearidades, pois não fazem qualquer pressuposto sobre as distribuições de probabilidade que caracterizam estes mercados. O facto destas redes neuronais serem dinâmicas, faz com que estas exibam um desempenho superior em relação às redes neuronais estáticas, ou outros algoritmos que não possuem qualquer tipo de memória. Apesar das vantagens reveladas pelas redes neuronais, estas são um sistema do tipo black box, o que torna muito difícil extrair informação dos pesos da rede. Isto significa que estes algoritmos devem ser usados com precaução, pois podem tornar-se instáveis.