5 resultados para weekend

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and of massive electric vehicle is envisaged. The present paper proposes a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distributed generation and Vehicle-to-Grid (V2G). This method considers that the energy resources are managed by a Virtual Power Player (VPP) which established contracts with their owners. It takes into account these contracts, the users' requirements subjected to the VPP, and several discharge price steps. The full AC power flow calculation included in the model takes into account network constraints. The influence of the successive day requirements on the day-ahead optimal solution is discussed and considered in the proposed model. A case study with a 33-bus distribution network and V2G is used to illustrate the good performance of the proposed method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Orientação: Doutora Maria Alexandra Pacheco Ribeiro da Costa

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi- Agent System for Competitive Electricity Markets), which performs realistic simulations of the electricity markets. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from each market context. However, it is still necessary to adequately optimize the players’ portfolio investment. For this purpose, this paper proposes a market portfolio optimization method, based on particle swarm optimization, which provides the best investment profile for a market player, considering different market opportunities (bilateral negotiation, market sessions, and operation in different markets) and the negotiation context such as the peak and off-peak periods of the day, the type of day (business day, weekend, holiday, etc.) and most important, the renewable based distributed generation forecast. The proposed approach is tested and validated using real electricity markets data from the Iberian operator – MIBEL.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi-Agent System for Competitive Electricity Markets), which simulates the electricity markets. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. However, it is still necessary to adequately optimize the player’s portfolio investment. For this purpose, this paper proposes a market portfolio optimization method, based on particle swarm optimization, which provides the best investment profile for a market player, considering the different markets the player is acting on in each moment, and depending on different contexts of negotiation, such as the peak and offpeak periods of the day, and the type of day (business day, weekend, holiday, etc.). The proposed approach is tested and validated using real electricity markets data from the Iberian operator – OMIE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste relatório apresentam-se resultados de um estudo estatístico que procura contribuir para um melhor entendimento da problemática inerente à liberalização do setor elétrico em Portugal e dos desafios que esta liberalização, existente desde meados de 2007, trás aos seus intervenientes. Iniciam-se os trabalhos com um estudo que pretende avaliar a existência de relação entre o Preço de Mercado da eletricidade e um conjunto de variáveis potencialmente explicativas/condicionantes do Preço de Mercado. Neste estudo consideram-se duas abordagens. A primeira usa a função de correlação cruzada para avaliar a existência de relação do tipo linear entre pares de variáveis. A segunda considera o teste causalidade de Granger na avaliação de uma relação de causa e efeito entre esses pares. Este estudo avaliou a relação entre o Preço de Mercado da eletricidade e 19 variáveis ditas condicionantes distribuídas por três categorias distintas (consumo e produção de eletricidade; indicadores climáticos; e energias primárias). O intervalo de tempo em estudo cinge-se ao biénio 2012-2103. Durante este período avaliam-se as relações entre as variáveis em diversos sub-períodos de tempo em ciclos de consumo representativos do consumo em baixa (fim de semana) e de consumo mais elevado (fora de vazio) com os valores observados de cada uma das variáveis tratados com uma base horária e diária (média). Os resultados obtidos mostram a existência relação linear entre algumas das variáveis em estudo e o preço da eletricidade em regime de mercado liberalizado, mas raramente é possível identificar precedência temporal entre as variáveis. Considerando os resultados da análise de correlação e causalidade, apresenta-se ainda um modelo de previsão do Preço de Mercado para o curto e médio prazo em horas de período fora de vazio.