6 resultados para undergraduate curriculum
em Instituto Politécnico do Porto, Portugal
Resumo:
Robotics research in Portugal is increasing every year, but few students embrace it as one of their first choices for study. Until recently, job offers for engineers were plentiful, and those looking for a degree in science and technology would avoid areas considered to be demanding, like robotics. At the undergraduate level, robotics programs are still competing for a place in the classical engineering graduate curricula. Innovative and dynamic Master’s programs may offer the solution to this gap. The Master’s degree in autonomous systems at the Instituto Superior de Engenharia do Porto (ISEP), Porto, Portugal, was designed to provide a solid training in robotics and has been showing interesting results, mainly due to differences in course structure and the context in which students are welcomed to study and work
Resumo:
Robotics research in Portugal is increasing every year, but few students embrace it as one of their first choices for study. Until recently, job offers for engineers were plentiful, and those looking for a degree in science and technology would avoid areas considered to be demanding, like robotics. At the undergraduate level, robotics programs are still competing for a place in the classical engineering graduate curricula. Innovative and dynamic Master's programs may offer the solution to this gap. The Master's degree in autonomous systems at the Instituto Superior de Engenharia do Porto (ISEP), Porto, Portugal, was designed to provide a solid training in robotics and has been showing interesting results, mainly due to differences in course structure and the context in which students are welcomed to study and work.
Resumo:
β-lactamases are hydrolytic enzymes that inactivate the β-lactam ring of antibiotics such as penicillins and cephalosporins. The major diversity of studies carried out until now have mainly focused on the characterization of β-lactamases recovered among clinical isolates of Gram-positive staphylococci and Gram-negative enterobacteria, amongst others. However, only some studies refer to the detection and development of β-lactamases carriers in healthy humans, sick animals, or even in strains isolated from environmental stocks such as food, water, or soils. Considering this, we proposed a 10-week laboratory programme for the Biochemistry and Molecular Biology laboratory for majors in the health, environmental, and agronomical sciences. During those weeks, students would be dealing with some basic techniques such as DNA extraction, bacterial transformation, polymerase chain reaction (PCR), gel electrophoresis, and the use of several bioinformatics tools. These laboratory exercises would be conducted as a mini research project in which all the classes would be connected with the previous ones. This curriculum was compared in an experiment involving two groups of students from two different majors. The new curriculum, with classes linked together as a mini research project, was taught to a major in Pharmacy and an old curriculum was taught to students from environmental health. The results showed that students who were enrolled in the new curriculum obtained better results in the final exam than the students who were enrolled in the former curriculum. Likewise, these students were found to be more enthusiastic during the laboratory classes than those from the former curriculum.
Resumo:
The use of remote labs in undergraduate courses has been reported in literature several times since the mid 90's. Nevertheless, very few articles present results about the correspondent learning gains obtained by students, and in what conditions those systems can be more efficient, thus suggesting a lack of data concerning their pedagogical effectiveness. This paper addresses such a gap by presenting some initial findings concerning the use of a remote lab (VISIR), in a large undergraduate course on Physics, with over 550 students enrolled.
Resumo:
The use of remote labs in undergraduate courses has been reported in literature several times since the mid 90's. Nevertheless, very few articles present results about the learning gains obtained by students using them, especially with a large number of students, thus suggesting a lack of data concerning their pedagogical effectiveness. This paper addresses such a gap by presenting some preliminary results concerning the use of a remote laboratory, known as VISIR, in a large undergraduate course on Applied Physics, with over 500 students enrolled.
Resumo:
Practical sessions are the backbone of qualification in engineering education. It leads to a better understanding and allows mastering scientific concepts and theories. The lack of the availability of practical sessions at many universities and institutions owing to the cost and the unavailability of instructors the most of the time caused a significant decline in experimentation in engineering education over the last decades. Recently, with the progress of computer-based learning, remote laboratories have been proven to be the best alternative to the traditional ones, regarding to its low cost and ubiquity. Some universities have already started to deploy remote labs in their practical sessions. This contribution compiles diverse experiences based on the deployment of the remote laboratory, Virtual Instrument Systems in Reality (VISIR), on the practices of undergraduate engineering grades at various universities within the VISIR community. It aims to show the impact of its usage on engineering education concerning the assessments of students and teachers as well.