3 resultados para ultrafine grained microstructure
em Instituto Politécnico do Porto, Portugal
Resumo:
The main aims of the present study are simultaneously to relate the brazing parameters with: (i) the correspondent interfacial microstructure, (ii) the resultant mechanical properties and (iii) the electrochemical degradation behaviour of AISI 316 stainless steel/alumina brazed joints. Filler metals on such as Ag–26.5Cu–3Ti and Ag–34.5Cu–1.5Ti were used to produce the joints. Three different brazing temperatures (850, 900 and 950 °C), keeping a constant holding time of 20 min, were tested. The objective was to understand the influence of the brazing temperature on the final microstructure and properties of the joints. The mechanical properties of the metal/ceramic (M/C) joints were assessed from bond strength tests carried out using a shear solicitation loading scheme. The fracture surfaces were studied both morphologically and structurally using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The degradation behaviour of the M/C joints was assessed by means of electrochemical techniques. It was found that using a Ag–26.5Cu–3Ti brazing alloy and a brazing temperature of 850 °C, produces the best results in terms of bond strength, 234 ± 18 MPa. The mechanical properties obtained could be explained on the basis of the different compounds identified on the fracture surfaces by XRD. On the other hand, the use of the Ag–34.5Cu–1.5Ti brazing alloy and a brazing temperature of 850 °C produces the best results in terms of corrosion rates (lower corrosion current density), 0.76 ± 0.21 μA cm−2. Nevertheless, the joints produced at 850 °C using a Ag–26.5Cu–3Ti brazing alloy present the best compromise between mechanical properties and degradation behaviour, 234 ± 18 MPa and 1.26 ± 0.58 μA cm−2, respectively. The role of Ti diffusion is fundamental in terms of the final value achieved for the M/C bond strength. On the contrary, the Ag and Cu distribution along the brazed interface seem to play the most relevant role in the metal/ceramic joints electrochemical performance.
Resumo:
Due to their detrimental effects on human health, the scientific interest in ultrafine particles (UFP) has been increasing, but available information is far from comprehensive. Compared to the remaining population, the elderly are potentially highly susceptible to the effects of outdoor air pollution. Thus, this study aimed to (1) determine the levels of outdoor pollutants in an urban area with emphasis on UFP concentrations and (2) estimate the respective dose rates of exposure for elderly populations. UFP were continuously measured over 3 weeks at 3 sites in north Portugal: 2 urban (U1 and U2) and 1 rural used as reference (R1). Meteorological parameters and outdoor pollutants including particulate matter (PM10), ozone (O3), nitric oxide (NO), and nitrogen dioxide (NO2) were also measured. The dose rates of inhalation exposure to UFP were estimated for three different elderly age categories: 64–70, 71–80, and >81 years. Over the sampling period levels of PM10, O3 and NO2 were in compliance with European legislation. Mean UFP were 1.7 × 104 and 1.2 × 104 particles/cm3 at U1 and U2, respectively, whereas at rural site levels were 20–70% lower (mean of 1 ×104 particles/cm3). Vehicular traffic and local emissions were the predominant identified sources of UFP at urban sites. In addition, results of correlation analysis showed that UFP were meteorologically dependent. Exposure dose rates were 1.2- to 1.4-fold higher at urban than reference sites with the highest levels noted for adults at 71–80 yr, attributed mainly to higher inhalation rates.
Resumo:
The aim of this work was to assess ultrafine particles (UFP) number concentrations in different microenvironments of Portuguese preschools and to estimate the respective exposure doses of UFP for 3–5-year-old children (in comparison with adults). UFP were sampled both indoors and outdoors in two urban (US1, US2) and one rural (RS1) preschool located in north of Portugal for 31 days. Total levels of indoor UFP were significantly higher at the urban preschools (mean of 1.82x104 and 1.32x104 particles/cm3 at US1 an US2, respectively) than at the rural one (1.15x104 particles/cm3). Canteens were the indoor microenvironment with the highest UFP (mean of 5.17x104, 3.28x104, and 4.09x104 particles/cm3 at US1, US2, and RS1), whereas the lowest concentrations were observed in classrooms (9.31x103, 11.3x103, and 7.14x103 particles/cm3 at US1, US2, and RS1). Mean indoor/outdoor ratios (I/O) of UFP at three preschools were lower than 1 (0.54–0.93), indicating that outdoor emissions significantly contributed to UFP indoors. Significant correlations were obtained between temperature, wind speed, relative humidity, solar radiation, and ambient UFP number concentrations. The estimated exposure doses were higher in children attending urban preschools; 3–5-year-old children were exposed to 4–6 times higher UFP doses than adults with similar daily schedules.