6 resultados para tissues of Corbicula fluminea

em Instituto Politécnico do Porto, Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accumulation of microcystin-LR (MC-LR) in edible aquatic organisms, particularly in bivalves, is widely documented. In this study, the effects of food storage and processing conditions on the free MC-LR concentration in clams (Corbicula fluminea) fed MC-LR-producing Microcystisaeruginosa (1 × 105 cell/mL) for four days, and the bioaccessibility of MC-LR after in vitro proteolytic digestion were investigated. The concentration of free MC-LR in clams decreased sequentially over the time with unrefrigerated and refrigerated storage and increased with freezing storage. Overall, cooking for short periods of time resulted in a significantly higher concentration (P < 0.05) of free MC-LR in clams, specifically microwave (MW) radiation treatment for 0.5 (57.5%) and 1 min (59%) and boiling treatment for 5 (163.4%) and 15 min (213.4%). The bioaccessibility of MC-LR after proteolytic digestion was reduced to 83%, potentially because of MC-LR degradation by pancreatic enzymes. Our results suggest that risk assessment based on direct comparison between MC-LR concentrations determined in raw food products and the tolerable daily intake (TDI) value set for the MC-LR might not be representative of true human exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An accurate and sensitive method for determination of 18 polycyclic aromatic hydrocarbons (PAHs) (16 PAHs considered by USEPA as priority pollutants, dibenzo[a,l]pyrene and benzo[j]fluoranthene) in fish samples was validated. Analysis was performed by microwave-assisted extraction and liquid chromatography with photodiode array and fluorescence detection. Response surface methodology was used to find the optimal extraction parameters. Validation of the overall methodology was performed by spiking assays at four levels and using SRM 2977. Quantification limits ranging from 0.15–27.16 ng/g wet weight were obtained. The established method was applied in edible tissues of three commonly consumed and commercially valuable fish species (sardine, chub mackerel and horse mackerel) originated from Atlantic Ocean. Variable levels of naphthalene (1.03–2.95 ng/g wet weight), fluorene (0.34–1.09 ng/g wet weight) and phenanthrene (0.34–3.54 ng/g wet weight) were detected in the analysed samples. None of the samples contained detectable amounts of benzo[a]pyrene, the marker used for evaluating the occurrence and carcinogenic effects of PAHs in food.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metals are ubiquitous in the environment and accumulate in aquatic organisms and are known for their ability to enhance the production of reactive oxygen species (ROS). In aquatic species, oxidative stress mechanisms have been studied by measuring antioxidant enzyme activities and oxidative damages in tissues. The aim of this study was to apply and validate a set of oxidative stress biomarkers and correlate responses with metal contents in tissues of common octopus (Octopus vulgaris). Antioxidant enzyme activity (catalase — CAT, superoxide dismutase — SOD and glutathione S-transferases — GST), oxidative damages (lipid peroxidation — LPO and protein carbonyl content — PCO) andmetal content (Cu, Zn, Pb, Cd and As) in the digestive gland and armof octopus, collected in the NWPortuguese coast in different periods, were assessed after capture and after 14 days in captivity. CAT and SOD activitieswere highly responsive to fluctuations inmetal concentrations and able to reduce oxidative damage, LPO and PCO in the digestive gland. CAT activity was also positively correlated with SOD and GST activities, which emphasizes that the three enzymes respond in a coordinated way to metal induced oxidative stress. Our results validate the use of oxidative stress biomarkers to assess metal pollution effects in this ecological and commercial relevant species.Moreover, octopus seems to have the ability to control oxidative damage by triggering an antioxidant enzyme coordinated response in the digestive gland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endophyte-assisted phytoremediation has recently been suggested as a successful approach for ecological restoration of metal contaminated soils, however little information is available on the influence of endophytic bacteria on the phytoextraction capacity of metal hyperaccumulating plants in multi-metal polluted soils. The aims of our study were to isolate and characterize metal-resistant and 1-aminocyclopropane-1-carboxylate (ACC) utilizing endophytic bacteria from tissues of the newly discovered Zn/Cd hyperaccumulator Sedum plumbizincicola and to examine if these endophytic bacterial strains could improve the efficiency of phytoextraction of multi-metal contaminated soils. Among a collection of 42 metal resistant bacterial strains isolated from the tissues of S. plumbizincicola grown on Pb/Zn mine tailings, five plant growth promoting endophytic bacterial strains (PGPE) were selected due to their ability to promote plant growth and to utilize ACC as the sole nitrogen source. The five isolates were identified as Bacillus pumilus E2S2, Bacillus sp. E1S2, Bacillus sp. E4S1, Achromobacter sp. E4L5 and Stenotrophomonas sp. E1L and subsequent testing revealed that they all exhibited traits associated with plant growth promotion, such as production of indole-3-acetic acid and siderophores and solubilization of phosphorus. These five strains showed high resistance to heavy metals (Cd, Zn and Pb) and various antibiotics. Further, inoculation of these ACC utilizing strains significantly increased the concentrations of water extractable Cd and Zn in soil. Moreover, a pot experiment was conducted to elucidate the effects of inoculating metal-resistant ACC utilizing strains on the growth of S. plumbizincicola and its uptake of Cd, Zn and Pb in multi-metal contaminated soils. Out of the five strains, B. pumilus E2S2 significantly increased root (146%) and shoot (17%) length, fresh (37%) and dry biomass (32%) of S. plumbizincicola as well as plant Cd uptake (43%), whereas Bacillus sp. E1S2 significantly enhanced the accumulation of Zn (18%) in plants compared with non-inoculated controls. The inoculated strains also showed high levels of colonization in rhizosphere and plant tissues. Results demonstrate the potential to improve phytoextraction of soils contaminated with multiple heavy metals by inoculating metal hyperaccumulating plants with their own selected functional endophytic bacterial strains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cation transporters/channels are key players in a wide range of physiological functions in plants, including cell signaling, osmoregulation, plant nutrition and metal tolerance. The recent identification of genes encoding some of these transport systems has allowed new studies toward further understanding of their integrated roles in plant. This review summarizes recent discoveries regarding the function and regulation of the multiple systems involved in cation transport in plant cells. The role of membrane transport in the uptake, distribution and accumulation of cations in plant tissues, cell types and subcellular compartments is described. We also discuss how the knowledge of inter- and intra-species variation in cation uptake, transport and accumulation as well as the molecular mechanisms responsible for these processes can be used to increase nutrient phytoavailability and nutrients accumulation in the edible tissues of plants. The main trends for future research in the field of biofortification are proposed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The study of chemical diffusion in biological tissues is a research field of high importance and with application in many clinical, research and industrial areas. The evaluation of diffusion and viscosity properties of chemicals in tissues is necessary to characterize treatments or inclusion of preservatives in tissues or organs for low temperature conservation. Recently, we have demonstrated experimentally that the diffusion properties and dynamic viscosity of sugars and alcohols can be evaluated from optical measurements. Our studies were performed in skeletal muscle, but our results have revealed that the same methodology can be used with other tissues and different chemicals. Considering the significant number of studies that can be made with this method, it becomes necessary to turn data processing and calculation easier. With this objective, we have developed a software application that integrates all processing and calculations, turning the researcher work easier and faster. Using the same experimental data that previously was used to estimate the diffusion and viscosity of glucose in skeletal muscle, we have repeated the calculations with the new application. Comparing between the results obtained with the new application and with previous independent routines we have demonstrated great similarity and consequently validated the application. This new tool is now available to be used in similar research to obtain the diffusion properties of other chemicals in different tissues or organs.