4 resultados para time of nitrogen application

em Instituto Politécnico do Porto, Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this work was to develop an application capable of determining the diffusion times and diffusion coefficients of optical clearing agents and water inside a known type of muscle. Different types of chemical agents can also be used with the method implemented, such as medications or metabolic products. Since the diffusion times can be calculated, it is possible to describe the dehydration mechanism that occurs in the muscle. The calculation of the diffusion time of an optical clearing agent allows to characterize the refractive index matching mechanism of optical clearing. By using both the diffusion times and diffusion of water and clearing agents not only the optical clearing mechanisms are characterized, but also information about optical clearing effect duration and magnitude is obtained. Such information is crucial to plan a clinical intervention in cooperation with optical clearing. The experimental method and equations implemented in the developed application are described in throughout this document, demonstrating its effectiveness. The application was developed in MATLAB code, but the method was personalized so it better fits the application needs. This process significantly improved the processing efficiency, reduced the time to obtain he results, multiple validations prevents common errors and some extra functionalities were added such as saving application progress or export information in different formats. Tests were made using glucose measurements in muscle. Some of the data, for testing purposes, was also intentionally changed in order to obtain different simulations and results from the application. The entire project was validated by comparing the calculated results with the ones found in literature, which are also described in this document.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The short article attempts to make some very brief reflections on the effects a lack of public policies positively discriminatory in terms of public employment retirement. In particular, the observation of the absurd contradiction between the average age of retirement at the time of death (for men and women) and the average pension time for men and women in public employment in Portugal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electroactivity of butylate (BTL) is studied by cyclic voltammetry (CV) and square wave voltammetry (SWV) at a glassy carbon electrode (GCE) and a hanging mercury drop electrode (HMDE). Britton–Robinson buffer solutions of pH 1.9–11.5 are used as supporting electrolyte. CV voltammograms using GCE show a single anodic peak regarding the oxidation of BTL at +1.7V versus AgCl/ Ag, an irreversible process controlled by diffusion. Using a HMDE, a single cathodic peak is observed, at 1.0V versus AgCl/Ag. The reduction of BTL is irreversible and controlled by adsorption. Mechanism proposals are presented for these redox transformations. Optimisation is carried out univaryingly. Linearity ranges were 0.10–0.50 mmol L-1 and 2.0–9.0 µmolL-1 for anodic and cathodic peaks, respectively. The proposed method is applied to the determination of BTL in waters. Analytical results compare well with those obtained by an HPLC method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of agent diffusion in biological tissues is very important to understand and characterize the optical clearing effects and mechanisms involved: tissue dehydration and refractive index matching. From measurements made to study the optical clearing, it is obvious that light scattering is reduced and that the optical properties of the tissue are controlled in the process. On the other hand, optical measurements do not allow direct determination of the diffusion properties of the agent in the tissue and some calculations are necessary to estimate those properties. This fact is imposed by the occurrence of two fluxes at optical clearing: water typically directed out of and agent directed into the tissue. When the water content in the immersion solution is approximately the same as the free water content of the tissue, a balance is established for water and the agent flux dominates. To prove this concept experimentally, we have measured the collimated transmittance of skeletal muscle samples under treatment with aqueous solutions containing different concentrations of glucose. After estimating the mean diffusion time values for each of the treatments we have represented those values as a function of glucose concentration in solution. Such a representation presents a maximum diffusion time for a water content in solution equal to the tissue free water content. Such a maximum represents the real diffusion time of glucose in the muscle and with this value we could calculate the corresponding diffusion coefficient.