2 resultados para thiol

em Instituto Politécnico do Porto, Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of intracellular reduced glutathione (GSH) in the lead stress response of Saccharomyces cerevisiae was investigated. Yeast cells exposed to Pb, for 3 h, lost the cell proliferation capacity (viability) and decreased intracellular GSH level. The Pb-induced loss of cell viability was compared among yeast cells deficient in GSH1 (∆gsh1) or GSH2 (∆gsh2) genes and wild-type (WT) cells. When exposed to Pb, ∆gsh1 and ∆gsh2 cells did not display an increased loss of viability, compared with WT cells. However, the depletion of cellular thiols, including GSH, by treatment of WT cells with iodoacetamide (an alkylating agent, which binds covalently to thiol group), increased the loss of viability in Pb-treated cells. In contrast, GSH enrichment, due to the incubation of WT cells with amino acids mixture constituting GSH (l-glutamic acid, l-cysteine and glycine), reduced the Pb-induced loss of proliferation capacity. The obtained results suggest that intracellular GSH is involved in the defence against the Pb-induced toxicity; however, at physiological concentration, GSH seems not to be sufficient to prevent the Pb-induced loss of cell viability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Breast cancer is one of the most prevalent forms of cancer in women. Despite all recent advances in early diagnosis and therapy, mortality data is not decreasing. This is an outcome of the inexistence of validated serum biomarkers allowing an early prognosis, out coming from the limited understanding of the natural history of the disease. In this context, miRNAs have been attracting a special interest throughout the scientific community as promising biomarkers in the early diagnosis of cancer. In breast cancer, several miRNAs and their levels of expression are significantly different between normal tissue and tissue with neoplasia, as well as between different molecular subtypes of breast cancer, also associated with prognosis. Thus, this these presents a meta-analysis that allows identifying a reliable miRNA biomarker for the early detection of breast cancer. In this, miRNA-155 was identified as the best one and an electrochemical biosensor was developed for its detection in serum samples. The biosensor was assembled by following three button-up stages: (1) the complementary miRNA sequence thiol terminated (anti-miRNA-155) was immobilized on a commercial gold screen-printed electrode (Au-SPE), followed by (2) blocking non-specific binding with mercaptosuccinic acid and by (3) miRNA hybridization. The biosensor was able to detect miRNA concentrations lying in the 10-18 mol/L (aM) range, displaying a linear response from 10 aM to 1nM. The device showed a limit of detection of 5.7 aM in human serum samples and good selectivity against other biomolecules in serum, such as cancer antigen CA-15.3 and bovine serum albumin (BSA). Overall, this simple and sensitive strategy is a promising approach for the quantitative and/or simultaneous analysis of multiple miRNA in physiological fluids, aiming at further biomedical research devoted to biomarker monitoring and point-of-care diagnosis.