40 resultados para structural response
em Instituto Politécnico do Porto, Portugal
Resumo:
The problem of uncertainty propagation in composite laminate structures is studied. An approach based on the optimal design of composite structures to achieve a target reliability level is proposed. Using the Uniform Design Method (UDM), a set of design points is generated over a design domain centred at mean values of random variables, aimed at studying the space variability. The most critical Tsai number, the structural reliability index and the sensitivities are obtained for each UDM design point, using the maximum load obtained from optimal design search. Using the UDM design points as input/output patterns, an Artificial Neural Network (ANN) is developed based on supervised evolutionary learning. Finally, using the developed ANN a Monte Carlo simulation procedure is implemented and the variability of the structural response based on global sensitivity analysis (GSA) is studied. The GSA is based on the first order Sobol indices and relative sensitivities. An appropriate GSA algorithm aiming to obtain Sobol indices is proposed. The most important sources of uncertainty are identified.
Resumo:
This article describes a finite element-based formulation for the statistical analysis of the response of stochastic structural composite systems whose material properties are described by random fields. A first-order technique is used to obtain the second-order statistics for the structural response considering means and variances of the displacement and stress fields of plate or shell composite structures. Propagation of uncertainties depends on sensitivities taken as measurement of variation effects. The adjoint variable method is used to obtain the sensitivity matrix. This method is appropriated for composite structures due to the large number of random input parameters. Dominant effects on the stochastic characteristics are studied analyzing the influence of different random parameters. In particular, a study of the anisotropy influence on uncertainties propagation of angle-ply composites is carried out based on the proposed approach.
Resumo:
The influence of uncertainties of input parameters on output response of composite structures is investigated in this paper. In particular, the effects of deviations in mechanical properties, ply angles, ply thickness and on applied loads are studied. The uncertainty propagation and the importance measure of input parameters are analysed using three different approaches: a first-order local method, a Global Sensitivity Analysis (GSA) supported by a variance-based method and an extension of local variance to estimate the global variance over the domain of inputs. Sample results are shown for a shell composite laminated structure built with different composite systems including multi-materials. The importance measures of input parameters on structural response based on numerical results are established and discussed as a function of the anisotropy of composite materials. Needs for global variance methods are discussed by comparing the results obtained from different proposed methodologies. The objective of this paper is to contribute for the use of GSA techniques together with low expensive local importance measures.
Resumo:
Variations of manufacturing process parameters and environmental aspects may affect the quality and performance of composite materials, which consequently affects their structural behaviour. Reliability-based design optimisation (RBDO) and robust design optimisation (RDO) searches for safe structural systems with minimal variability of response when subjected to uncertainties in material design parameters. An approach that simultaneously considers reliability and robustness is proposed in this paper. Depending on a given reliability index imposed on composite structures, a trade-off is established between the performance targets and robustness. Robustness is expressed in terms of the coefficient of variation of the constrained structural response weighted by its nominal value. The Pareto normed front is built and the nearest point to the origin is estimated as the best solution of the bi-objective optimisation problem.
Resumo:
Stone masonry is one of the oldest and most worldwide used building techniques. Nevertheless, the structural response of masonry structures is complex and the effective knowledge about their mechanical behaviour is still limited. This fact is particularly notorious when dealing with the description of their out-of-plane behaviour under horizontal loadings, as is the case of the earthquake action. In this context, this paper describes an experimental program, conducted in laboratory environment, aiming at characterizing the out-of-plane behaviour of traditional unreinforced stone masonry walls. In the scope of this campaign, six full-scale sacco stone masonry specimens were fully characterised regarding their most important mechanic, geometric and dynamic features and were tested resorting to two different loading techniques under three distinct vertical pre-compression states; three of the specimens were subjected to an out-of-plane surface load by means of a system of airbags and the remaining were subjected to an out-of-plane horizontal line-load at the top. From the experiments it was possible to observe that both test setups were able to globally mobilize the out-of-plane response of the walls, which presented substantial displacement capacity, with ratios of ultimate displacement to the wall thickness ranging between 26 and 45 %, as well as good energy dissipation capacity. Finally, very interesting results were also obtained from a simple analytical model used herein to compute a set of experimental-based ratios, namely between the maximum stability displacement and the wall thickness for which a mean value of about 60 % was found.
Resumo:
Asthma is a chronic inflammatory disorder of the respiratory airways affecting people of all ages, and constitutes a serious public health problem worldwide (6). Such a chronic inflammation is invariably associated with injury and repair of the bronchial epithelium known as remodelling (11). Inflammation, remodelling, and altered neural control of the airways are responsible for both recurrent exacerbations of asthma and increasingly permanent airflow obstruction (11, 29, 34). Excessive airway narrowing is caused by altered smooth muscle behaviour, in close interaction with swelling of the airway walls, parenchyma retractile forces, and enhanced intraluminal secretions (29, 38). All these functional and structural changes are associated with the characteristic symptoms of asthma – cough, chest tightness, and wheezing –and have a significant impact on patients’ daily lives, on their families and also on society (1, 24, 29). Recent epidemiological studies show an increase in the prevalence of asthma, mainly in industrial countries (12, 25, 37). The reasons for this increase may depend on host factors (e.g., genetic disposition) or on environmental factors like air pollution or contact with allergens (6, 22, 29). Physical exercise is probably the most common trigger for brief episodes of symptoms, and is assumed to induce airflow limitations in most asthmatic children and young adults (16, 24, 29, 33). Exercise-induced asthma (EIA) is defined as an intermittent narrowing of the airways, generally associated with respiratory symptoms (chest tightness, cough, wheezing and dyspnoea), occurring after 3 to 10 minutes of vigorous exercise with a maximal severity during 5 to 15 minutes after the end of the exercise (9, 14, 16, 24, 33). The definitive diagnosis of EIA is confirmed by the measurement of pre- and post-exercise expiratory flows documenting either a 15% fall in the forced expiratory volume in 1 second (FEV1), or a ≥15 to 20% fall in peak expiratory flow (PEF) (9, 24, 29). Some types of physical exercise have been associated with the occurrence of bronchial symptoms and asthma (5, 15, 17). For instance, demanding activities such as basketball or soccer could cause more severe attacks than less vigorous ones such as baseball or jogging (33). The mechanisms of exercise-induced airflow limitations seem to be related to changes in the respiratory mucosa induced by hyperventilation (9, 29). The heat loss from the airways during exercise, and possibly its post-exercise rewarming may contribute to the exercise-induced bronchoconstriction (EIB) (27). Additionally, the concomitant dehydration from the respiratory mucosa during exercise leads to an increased interstitial osmolarity, which may also contribute to bronchoconstriction (4, 36). So, the risk of EIB in asthmatically predisposed subjects seems to be higher with greater ventilation rates and the cooler and drier the inspired air is (23). The incidence of EIA in physically demanding coldweather sports like competitive figure skating and ice hockey has been found to occur in up to 30 to 35% of the participants (32). In contrast, swimming is often recommended to asthmatic individuals, because it improves the functionality of respiratory muscles and, moreover, it seems to have a concomitant beneficial effect on the prevalence of asthma exacerbations (14, 26), supporting the idea that the risk of EIB would be smaller in warm and humid environments. This topic, however, remains controversial since the chlorified water of swimming pools has been suspected as a potential trigger factor for some asthmatic patients (7, 8, 20, 21). In fact, the higher asthma incidence observed in industrialised countries has recently been linked to the exposition to chloride (7, 8, 30). Although clinical and epidemiological data suggest an influence of humidity and temperature of the inspired air on the bronchial response of asthmatic subjects during exercise, some of those studies did not accurately control the intensity of the exercise (2, 13), raising speculation of whether the experienced exercise overload was comparable for all subjects. Additionally, most of the studies did not include a control group (2, 10, 19, 39), which may lead to doubts about whether asthma per se has conditioned the observed results. Moreover, since the main targeted age group of these studies has been adults (10, 19, 39), any extrapolation to childhood/adolescence might be questionable regarding the different lung maturation. Considering the higher incidence of asthma in youngsters (30) and the fact that only the works of Amirav and coworkers (2, 3) have focused on this age group, a scarcity of scientific data can be identified. Additionally, since the main environmental trigger factors, i.e., temperature and humidity, were tested separately (10, 28, 39) it would be useful to analyse these two variables simultaneously because of their synergic effect on water and heat loss by the airways (31, 33). It also appears important to estimate the airway responsiveness to exercise within moderate environmental ranges of temperature and humidity, trying to avoid extreme temperatures and humidity conditions used by others (2, 3). So, the aim of this study was to analyse the influence of moderate changes in air temperature and humidity simultaneously on the acute ventilatory response to exercise in asthmatic children. To overcome the above referred to methodological limitations, we used a 15 minute progressive exercise trial on a cycle ergometer at 3 different workload intensities, and we collected data related to heart rate, respiratory quotient, minute ventilation and oxygen uptake in order to ensure that physiological exercise repercussions were the same in both environments. The tests were done in a “normal” climatic environment (in a gymnasium) and in a hot and humid environment (swimming pool); for the latter, direct chloride exposition was avoided.
Resumo:
With the constant development of new antibiotics, selective pressure is a force to reckon when investigating antibiotic resistance. Although advantageous for medical treatments, it leads to increasing resistance. It is essential to use more potent and toxic antibiotics. Enzymes capable of hydrolyzing antibiotics are among the most common ways of resistance and TEM variants have been detected in several resistant isolates. Due to the rapid evolution of these variants, complex phenotypes have emerged and the need to understand their biological activity becomes crucial. To investigate the biochemical properties of TEM-180 and TEM-201 several computational methodologies have been used, allowing the comprehension of their structure and catalytic activity, which translates into their biological phenotype. In this work we intent to characterize the interface between these proteins and the several antibiotics used as ligands. We performed explicit solvent molecular dynamics (MD) simulations of these complexes and studied a variety of structural and energetic features. The interfacial residues show a distinct behavior when in complex with different antibiotics. Nevertheless, it was possible to identify some common Hot Spots among several complexes – Lys73, Tyr105 and Glu166. The structural changes that occur during the Molecular Dynamic (MD) simulation lead to the conclusion that these variants have an inherent capacity of adapting to the various antibiotics. This capability might be the reason why they can hydrolyze antibiotics that have not been described until now to be degraded by TEM variants. The results obtained with computational and experimental methodologies for the complex with Imipenem have shown that in order to this type of enzymes be able to acylate the antibiotics, they need to be capable to protect the ligand from water molecules.
Resumo:
Purpose: To quantify the effect of unstable shoe wearing on muscle activity and haemodynamic response during standing. Methods: Thirty volunteers were divided into 2 groups: the experimental group wore an unstable shoe for 8 weeks, while the control group used a conventional shoe for the same period. Muscle activity of the medial gastrocnemius, tibialis anterior, rectus femoris and biceps femoris and venous circulation were assessed in quiet standing with the unstable shoe and barefoot. Results: In the first measurement there was an increase in medial gastrocnemius activity in all volunteers while wearing the unstable shoe. On the other hand, after wearing the unstable shoe for eight weeks these differences were not verified. Venous return increased in subjects wearing the unstable shoe before and after training. Conclusions: The unstable shoe produced changes in electromyographic characteristics which were advantageous for venous circulation even after training accommodation by the neuromuscular system.
Resumo:
Power systems have been suffering huge changes mainly due to the substantial increase of distributed generation and to the operation in competitive environments. Virtual power players can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. Resource management gains an increasing relevance in this competitive context, while demand side active role provides managers with increased demand elasticity. This makes demand response use more interesting and flexible, giving rise to a wide range of new opportunities.This paper proposes a methodology for managing demand response programs in the scope of virtual power players. The proposed method is based on the calculation of locational marginal prices (LMP). The evaluation of the impact of using demand response specific programs on the LMP value supports the manager decision concerning demand response use. The proposed method has been computationally implemented and its application is illustrated in this paper using a 32 bus network with intensive use of distributed generation.
Resumo:
The introduction of Electric Vehicles (EVs) together with the implementation of smart grids will raise new challenges to power system operators. This paper proposes a demand response program for electric vehicle users which provides the network operator with another useful resource that consists in reducing vehicles charging necessities. This demand response program enables vehicle users to get some profit by agreeing to reduce their travel necessities and minimum battery level requirements on a given period. To support network operator actions, the amount of demand response usage can be estimated using data mining techniques applied to a database containing a large set of operation scenarios. The paper includes a case study based on simulated operation scenarios that consider different operation conditions, e.g. available renewable generation, and considering a diversity of distributed resources and electric vehicles with vehicle-to-grid capacity and demand response capacity in a 33 bus distribution network.
Resumo:
In competitive electricity markets with deep concerns for the efficiency level, demand response programs gain considerable significance. As demand response levels have decreased after the introduction of competition in the power industry, new approaches are required to take full advantage of demand response opportunities. Grid operators and utilities are taking new initiatives, recognizing the value of demand response for grid reliability and for the enhancement of organized spot markets’ efficiency. This paper proposes a methodology for the selection of the consumers that participate in an event, which is the responsibility of the Portuguese transmission network operator. The proposed method is intended to be applied in the interruptibility service implemented in Portugal, in convergence with Spain, in the context of the Iberian electricity market. This method is based on the calculation of locational marginal prices (LMP) which are used to support the decision concerning the consumers to be schedule for participation. The proposed method has been computationally implemented and its application is illustrated in this paper using a 937 bus distribution network with more than 20,000 consumers.
Resumo:
The design and development of simulation models and tools for Demand Response (DR) programs are becoming more and more important for adequately taking the maximum advantages of DR programs use. Moreover, a more active consumers’ participation in DR programs can help improving the system reliability and decrease or defer the required investments. DemSi, a DR simulator, designed and implemented by the authors of this paper, allows studying DR actions and schemes in distribution networks. It undertakes the technical validation of the solution using realistic network simulation based on PSCAD. DemSi considers the players involved in DR actions, and the results can be analyzed from each specific player point of view.
Using demand response to deal with unexpected low wind power generation in the context of smart grid
Resumo:
Demand response is assumed an essential resource to fully achieve the smart grids operating benefits, namely in the context of competitive markets. Some advantages of Demand Response (DR) programs and of smart grids can only be achieved through the implementation of Real Time Pricing (RTP). The integration of the expected increasing amounts of distributed energy resources, as well as new players, requires new approaches for the changing operation of power systems. The methodology proposed aims the minimization of the operation costs in a smart grid operated by a virtual power player. It is especially useful when actual and day ahead wind forecast differ significantly. When facing lower wind power generation than expected, RTP is used in order to minimize the impacts of such wind availability change. The proposed model application is here illustrated using the scenario of a special wind availability reduction day in the Portuguese power system (8th February 2012).
Resumo:
In competitive electricity markets with deep concerns at the efficiency level, demand response programs gain considerable significance. In the same way, distributed generation has gained increasing importance in the operation and planning of power systems. Grid operators and utilities are taking new initiatives, recognizing the value of demand response and of distributed generation for grid reliability and for the enhancement of organized spot market´s efficiency. Grid operators and utilities become able to act in both energy and reserve components of electricity markets. This paper proposes a methodology for a joint dispatch of demand response and distributed generation to provide energy and reserve by a virtual power player that operates a distribution network. The proposed method has been computationally implemented and its application is illustrated in this paper using a 32 bus distribution network with 32 medium voltage consumers.
Resumo:
The concept of demand response has a growing importance in the context of the future power systems. Demand response can be seen as a resource like distributed generation, storage, electric vehicles, etc. All these resources require the existence of an infrastructure able to give players the means to operate and use them in an efficient way. This infrastructure implements in practice the smart grid concept, and should accommodate a large number of diverse types of players in the context of a competitive business environment. In this paper, demand response is optimally scheduled jointly with other resources such as distributed generation units and the energy provided by the electricity market, minimizing the operation costs from the point of view of a virtual power player, who manages these resources and supplies the aggregated consumers. The optimal schedule is obtained using two approaches based on particle swarm optimization (with and without mutation) which are compared with a deterministic approach that is used as a reference methodology. A case study with two scenarios implemented in DemSi, a demand Response simulator developed by the authors, evidences the advantages of the use of the proposed particle swarm approaches.