7 resultados para stress strength factor

em Instituto Politécnico do Porto, Portugal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bonded unions are gaining importance in many fields of manufacturing owing to a significant number of advantages to the traditional fastening, riveting, bolting and welding techniques. Between the available bonding configurations, the single-lap joint is the most commonly used and studied by the scientific community due to its simplicity, although it endures significant bending due to the non-collinear load path, which negatively affects its load bearing capabilities. The use of material or geometric changes in single-lap joints is widely documented in the literature to reduce this handicap, acting by reduction of peel and shear peak stresses at the damage initiation sites in structures or alterations of the failure mechanism emerging from local modifications. In this work, the effect of hole drilling at the overlap on the strength of single-lap joints was analyzed experimentally with two main purposes: (1) to check whether or not the anchorage effect of the adhesive within the holes is more preponderant than the stress concentrations near the holes, arising from the sharp edges, and modification of the joints straining behaviour (strength improvement or reduction, respectively) and (2) picturing a real scenario on which the components to be bonded are modified by some external factor (e.g. retrofitting of decaying/old-fashioned fastened unions). Tests were made with two adhesives (a brittle and a ductile one) varying the adherend thickness and the number, layout and diameter of the holes. Experimental testing showed that the joints strength never increases from the un-modified condition, showing a varying degree of weakening, depending on the selected adhesive and hole drilling configuration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, an experimental study was performed on the influence of plug-filling, loading rate and temperature on the tensile strength of single-strap (SS) and double-strap (DS) repairs on aluminium structures. Whilst the main purpose of this work was to evaluate the feasibility of plug-filling for the strength improvement of these repairs, a parallel study was carried out to assess the sensitivity of the adhesive to external features that can affect the repairs performance, such as the rate of loading and environmental temperature. The experimental programme included repairs with different values of overlap length (L O = 10, 20 and 30 mm), and with and without plug-filling, whose results were interpreted in light of experimental evidence of the fracture modes and typical stress distributions for bonded repairs. The influence of the testing speed on the repairs strength was also addressed (considering 0.5, 5 and 25 mm/min). Accounting for the temperature effects, tests were carried out at room temperature (≈23°C), 50 and 80°C. This permitted a comparative evaluation of the adhesive tested below and above the glass transition temperature (T g), established by the manufacturer as 67°C. The combined influence of these two parameters on the repairs strength was also analysed. According to the results obtained from this work, design guidelines for repairing aluminium structures were

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports on an experimental and finite element method (FEM) parametric study of adhesively-bonded single and double-strap repairs on carbon-epoxy structures under buckling unrestrained compression. The influence of the overlap length and patch thickness was evaluated. This loading gains a particular significance from the additional characteristic mechanisms of structures under compression, such as fibres microbuckling, for buckling restrained structures, or global buckling of the assembly, if no transverse restriction exists. The FEM analysis is based on the use of cohesive elements including mixed-mode criteria to simulate a cohesive fracture of the adhesive layer. Trapezoidal laws in pure modes I and II were used to account for the ductility of most structural adhesives. These laws were estimated for the adhesive used from double cantilever beam (DCB) and end-notched flexure (ENF) tests, respectively, using an inverse technique. The pure mode III cohesive law was equalled to the pure mode II one. Compression failure in the laminates was predicted using a stress-based criterion. The accurate FEM predictions open a good prospect for the reduction of the extensive experimentation in the design of carbon-epoxy repairs. Design principles were also established for these repairs under buckling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adhesive bonding of components has become more efficient in recent years due to the developments in adhesive technology, which has resulted in higher peel and shear strengths, and also in allowable ductility up to failure. As a result, fastening and riveting methods are being progressively replaced by adhesive bonding, allowing a big step towards stronger and lighter unions. However, single-lap bonded joints still generate substantial peel and shear stress concentrations at the overlap edges that can be harmful to the structure, especially when using brittle adhesives that do not allow plasticization in these regions. In this work, a numerical and experimental study is performed to evaluate the feasibility of bending the adherends at the ends of the overlap for the strength improvement of single-lap aluminium joints bonded with a brittle and a ductile adhesive. Different combinations of joint eccentricity were tested, including absence of eccentricity, allowing the optimization of the joint. A Finite Element stress and failure analysis in ABAQUS® was also carried out to provide a better understanding of the bent configuration. Results showed a major advantage of using the proposed modification for the brittle adhesive, but the joints with the ductile adhesive were not much affected by the bending technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural integrity of multi-component structures is usually determined by the strength and durability of their unions. Adhesive bonding is often chosen over welding, riveting and bolting, due to the reduction of stress concentrations, reduced weight penalty and easy manufacturing, amongst other issues. In the past decades, the Finite Element Method (FEM) has been used for the simulation and strength prediction of bonded structures, by strength of materials or fracture mechanics-based criteria. Cohesive-zone models (CZMs) have already proved to be an effective tool in modelling damage growth, surpassing a few limitations of the aforementioned techniques. Despite this fact, they still suffer from the restriction of damage growth only at predefined growth paths. The eXtended Finite Element Method (XFEM) is a recent improvement of the FEM, developed to allow the growth of discontinuities within bulk solids along an arbitrary path, by enriching degrees of freedom with special displacement functions, thus overcoming the main restriction of CZMs. These two techniques were tested to simulate adhesively bonded single- and double-lap joints. The comparative evaluation of the two methods showed their capabilities and/or limitations for this specific purpose.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sorption is commonly agreed to be the major process underlying the transport and fate of polycyclic aromatic hydrocarbons (PAHs) in soils. However, there is still a scarcity of studies focusing on spatial variability at the field scale in particular. In order to investigate the variation in the field of phenanthrene sorption, bulk topsoil samples were taken in a 15 × 15-m grid from the plough layer in two sandy loam fields with different texture and organic carbon (OC) contents (140 samples in total). Batch experiments were performed using the adsorption method. Values for the partition coefficient K d (L kg−1) and the organic carbon partition coefficient K OC (L kg−1) agreed with the most frequently used models for PAH partitioning, as OC revealed a higher affinity for sorption. More complex models using different OC compartments, such as non-complexed organic carbon (NCOC) and complexed organic carbon (COC) separately, performed better than single K OC models, particularly for a subset including samples with Dexter n < 10 and OC <0.04 kg kg−1. The selected threshold revealed that K OC-based models proved to be applicable for more organic fields, while two-component models proved to be more accurate for the prediction of K d and retardation factor (R) for less organic soils. Moreover, OC did not fully reflect the changes in phenanthrene retardation in the field with lower OC content (Faardrup). Bulk density and available water content influenced the phenanthrene transport mechanism phenomenon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For treating chronic pain, a multifactorial condition, is needed a suitable diagnosis which allows the differentiation in its many components. Diabetic neuropathy is a worldwide disease with great impact in the modern society. Diabetes may leads to the production of reactive oxygen species that are associated to oxidative stress, which may be a key factor in the development of diabetic neuropathy. The main goal is to inquire a potential association between chronic pain, diabetic neuropathy and oxidative stress. Thus, was performed a meta-analysis that permitted the causal evaluation between oxidative stress and diabetic neuropathy, and, a pain evaluation was accomplished in a convenience sample using validated surveys – Brief Pain Inventory (BPI) and Douleur Neuropathique 4 (DN4). Through the meta-analysis it was possible evaluate oxidative stress biomarkers, such lipid peroxidation, superoxide dismutase and catalase activities, and reduced glutathione. 9 studies were selected and all were performed in mouse models. The levels of lipid peroxidation were increased in all the studies, however the levels of the other biomarkers were diminished in diabetic models comparatively to healthy controls. In the evaluation of convenience sample, 84 surveys were collected along the four seasons: summer, autumn, winter and spring. The pain complaints were described in terms of local, intensity, impact, relief by medication and its effect on daily activities using BPI questionnaire. The scores obtained in BPI indicate the presence of moderate to severe pain, with increased complaints in autumn and spring, and implications in daily activities, transversal to all groups. To determine the main features associated with neuropathic pain it was used DN4 questionnaire. The DN4 indicated the presence of nearly 50% of patients with neuropathic pain. The results suggest that being female, the increased age and being retired can influence chronic pain and neuropathic pain in patients. As main conclusions, it was possible to verify an association between oxidative stress, and neuropathic pain, and, also, that weather conditions may influence the pain complaints and its prevalence.