8 resultados para stereo vision

em Instituto Politécnico do Porto, Portugal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a novel approach of Stereo Visual Odometry for vehicles equipped with calibrated stereo cameras. We combine a dense probabilistic 5D egomotion estimation method with a sparse keypoint based stereo approach to provide high quality estimates of vehicle’s angular and linear velocities. To validate our approach, we perform two sets of experiments with a well known benchmarking dataset. First, we assess the quality of the raw velocity estimates in comparison to classical pose estimation algorithms. Second, we added to our method’s instantaneous velocity estimates a Kalman Filter and compare its performance with a well known open source stereo Visual Odometry library. The presented results compare favorably with state-of-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents an automatic calibration method for a vision based external underwater ground-truth positioning system. These systems are a relevant tool in benchmarking and assessing the quality of research in underwater robotics applications. A stereo vision system can in suitable environments such as test tanks or in clear water conditions provide accurate position with low cost and flexible operation. In this work we present a two step extrinsic camera parameter calibration procedure in order to reduce the setup time and provide accurate results. The proposed method uses a planar homography decomposition in order to determine the relative camera poses and the determination of vanishing points of detected lines in the image to obtain the global pose of the stereo rig in the reference frame. This method was applied to our external vision based ground-truth at the INESC TEC/Robotics test tank. Results are presented in comparison with an precise calibration performed using points obtained from an accurate 3D LIDAR modelling of the environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

in RoboCup 2007: Robot Soccer World Cup XI

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well-known that ROVs require human intervention to guarantee the success of their assignment, as well as the equipment safety. However, as its teleoperation is quite complex to perform, there is a need for assisted teleoperation. This study aims to take on this challenge by developing vision-based assisted teleoperation maneuvers, since a standard camera is present in any ROV. The proposed approach is a visual servoing solution, that allows the user to select between several standard image processing methods and is applied to a 3-DOF ROV. The most interesting characteristic of the presented system is the exclusive use of the camera data to improve the teleoperation of an underactuated ROV. It is demonstrated through the comparison and evaluation of standard implementations of different vision methods and the execution of simple maneuvers to acquire experimental results, that the teleoperation of a small ROV can be drastically improved without the need to install additional sensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oceans - San Diego, 2013

Relevância:

20.00% 20.00%

Publicador:

Resumo:

13th International Conference on Autonomous Robot Systems (Robotica), 2013

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we propose the development of a stereo SLS system for underwater inspection operations. We demonstrate how to perform a SLS calibration both in dry and underwater environments using two different methods. The proposed methodology is able to achieve quite accurate results, lower than 1 mm in dry environments. We also display a 3D underwater scan of a known object size, a sea scallop, where the system is able to perform a scan with a global error lower than 2% of the object size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a novel fully probabilistic solution to the stereo egomotion estimation problem. We extend the notion of probabilistic correspondence to the stereo case which allow us to compute the whole 6D motion information in a probabilistic way. We compare the developed approach against other known state-of-the-art methods for stereo egomotion estimation, and the obtained results compare favorably both for the linear and angular velocities estimation.