2 resultados para soil core

em Instituto Politécnico do Porto, Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Following a prescribed fire in a Pinus pinaster forest site located in the north-west Portugal, monitoring of any changes in selected soil characteristics and soil hydrology was undertaken to assess the effects of burning on the following: pH, electrical conductivity, water content, organic carbon and porosity. Thirty plots were established on a regular grid. At each sample plot before and after the fire, samples were collected (disturbed samples from depths of 0-1cm and 1-5cm; undisturbed core samples from 0-5cm). The results indicate that there was no measurable impact on the properties of the soil following this carefully conducted prescribed fire. The fire only affected the litter layer, as intended. Confirmation of this minimal impact on the soil was provided by regrowth of grasses and herbs already occurring two months after the fire. The implication is, therefore, that provided this wildfire-risk reduction strategy is carried out under existing strict guidelines, any impact on soil quality will be minimal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: Preferential flow and transport through macropores affect plant water use efficiency and enhance leaching of agrochemicals and the transport of colloids, thereby increasing the risk for contamination of groundwater resources. The effects of soil compaction, expressed in terms of bulk density (BD), and organic carbon (OC) content on preferential flow and transport were investigated using 150 undisturbed soil cores sampled from 15 × 15–m grids on two field sites. Both fields had loamy textures, but one site had significantly higher OC content. Leaching experiments were conducted in each core by applying a constant irrigation rate of 10 mm h−1 with a pulse application of tritium tracer. Five percent tritium mass arrival times and apparent dispersivities were derived from each of the tracer breakthrough curves and correlated with texture, OC content, and BD to assess the spatial distribution of preferential flow and transport across the investigated fields. Soils from both fields showed strong positive correlations between BD and preferential flow. Interestingly, the relationships between BD and tracer transport characteristics were markedly different for the two fields, although the relationship between BD and macroporosity was nearly identical. The difference was likely caused by the higher contents of fines and OC at one of the fields leading to stronger aggregation, smaller matrix permeability, and a more pronounced pipe-like pore system with well-aligned macropores.