9 resultados para sequence of functions
em Instituto Politécnico do Porto, Portugal
Resumo:
Optimization problems arise in science, engineering, economy, etc. and we need to find the best solutions for each reality. The methods used to solve these problems depend on several factors, including the amount and type of accessible information, the available algorithms for solving them, and, obviously, the intrinsic characteristics of the problem. There are many kinds of optimization problems and, consequently, many kinds of methods to solve them. When the involved functions are nonlinear and their derivatives are not known or are very difficult to calculate, these methods are more rare. These kinds of functions are frequently called black box functions. To solve such problems without constraints (unconstrained optimization), we can use direct search methods. These methods do not require any derivatives or approximations of them. But when the problem has constraints (nonlinear programming problems) and, additionally, the constraint functions are black box functions, it is much more difficult to find the most appropriate method. Penalty methods can then be used. They transform the original problem into a sequence of other problems, derived from the initial, all without constraints. Then this sequence of problems (without constraints) can be solved using the methods available for unconstrained optimization. In this chapter, we present a classification of some of the existing penalty methods and describe some of their assumptions and limitations. These methods allow the solving of optimization problems with continuous, discrete, and mixing constraints, without requiring continuity, differentiability, or convexity. Thus, penalty methods can be used as the first step in the resolution of constrained problems, by means of methods that typically are used by unconstrained problems. We also discuss a new class of penalty methods for nonlinear optimization, which adjust the penalty parameter dynamically.
Resumo:
Many of the most common human functions such as temporal and non-monotonic reasoning have not yet been fully mapped in developed systems, even though some theoretical breakthroughs have already been accomplished. This is mainly due to the inherent computational complexity of the theoretical approaches. In the particular area of fault diagnosis in power systems however, some systems which tried to solve the problem, have been deployed using methodologies such as production rule based expert systems, neural networks, recognition of chronicles, fuzzy expert systems, etc. SPARSE (from the Portuguese acronym, which means expert system for incident analysis and restoration support) was one of the developed systems and, in the sequence of its development, came the need to cope with incomplete and/or incorrect information as well as the traditional problems for power systems fault diagnosis based on SCADA (supervisory control and data acquisition) information retrieval, namely real-time operation, huge amounts of information, etc. This paper presents an architecture for a decision support system, which can solve the presented problems, using a symbiosis of the event calculus and the default reasoning rule based system paradigms, insuring soft real-time operation with incomplete, incorrect or domain incoherent information handling ability. A prototype implementation of this system is already at work in the control centre of the Portuguese Transmission Network.
Resumo:
This paper analyzes the DNA code of several species in the perspective of information content. For that purpose several concepts and mathematical tools are selected towards establishing a quantitative method without a priori distorting the alphabet represented by the sequence of DNA bases. The synergies of associating Gray code, histogram characterization and multidimensional scaling visualization lead to a collection of plots with a categorical representation of species and chromosomes.
Resumo:
A quinoxalina e seus derivativos são uma importante classe de compostos heterocíclicos, onde os elementos N, S e O substituem átomos de carbono no anel. A fórmula molecular da quinoxalina é C8H6N2, formada por dois anéis aromáticos, benzeno e pirazina. É rara em estado natural, mas a sua síntese é de fácil execução. Modificações na estrutura da quinoxalina proporcionam uma grande variedade de compostos e actividades, tais como actividades antimicrobiana, antiparasitária, antidiabética, antiproliferativa, anti-inflamatória, anticancerígena, antiglaucoma, antidepressiva apresentando antagonismo do receptor AMPA. Estes compostos também são importantes no campo industrial devido, por exemplo, ao seu poder na inibição da corrosão do metal. A química computacional, ramo natural da química teórica é um método bem desenvolvido, utilizado para representar estruturas moleculares, simulando o seu comportamento com as equações da física quântica e clássica. Existe no mercado uma grande variedade de ferramentas informaticas utilizadas na química computacional, que permitem o cálculo de energias, geometrias, frequências vibracionais, estados de transição, vias de reação, estados excitados e uma variedade de propriedades baseadas em várias funções de onda não correlacionadas e correlacionadas. Nesta medida, a sua aplicação ao estudo das quinoxalinas é importante para a determinação das suas características químicas, permitindo uma análise mais completa, em menos tempo, e com menos custos.
Resumo:
Dynamically reconfigurable systems have benefited from a new class of FPGAs recently introduced into the market, which allow partial and dynamic reconfiguration at run-time, enabling multiple independent functions from different applications to share the same device, swapping resources as needed. When the sequence of tasks to be performed is not predictable, resource allocation decisions have to be made on-line, fragmenting the FPGA logic space. A rearrangement may be necessary to get enough contiguous space to efficiently implement incoming functions, to avoid spreading their components and, as a result, degrading their performance. This paper presents a novel active replication mechanism for configurable logic blocks (CLBs), able to implement on-line rearrangements, defragmenting the available FPGA resources without disturbing those functions that are currently running.
Resumo:
Reconfigurable computing experienced a considerable expansion in the last few years, due in part to the fast run-time partial reconfiguration features offered by recent SRAM-based Field Programmable Gate Arrays (FPGAs), which allowed the implementation in real-time of dynamic resource allocation strategies, with multiple independent functions from different applications sharing the same logic resources in the space and temporal domains. However, when the sequence of reconfigurations to be performed is not predictable, the efficient management of the logic space available becomes the greatest challenge posed to these systems. Resource allocation decisions have to be made concurrently with system operation, taking into account function priorities and optimizing the space currently available. As a consequence of the unpredictability of this allocation procedure, the logic space becomes fragmented, with many small areas of free resources failing to satisfy most requests and so remaining unused. A rearrangement of the currently running functions is therefore necessary, so as to obtain enough contiguous space to implement incoming functions, avoiding the spreading of their components and the resulting degradation of system performance. A novel active relocation procedure for Configurable Logic Blocks (CLBs) is herein presented, able to carry out online rearrangements, defragmenting the available FPGA resources without disturbing functions currently running.
Resumo:
We study exotic patterns appearing in a network of coupled Chen oscillators. Namely, we consider a network of two rings coupled through a “buffer” cell, with Z3×Z5 symmetry group. Numerical simulations of the network reveal steady states, rotating waves in one ring and quasiperiodic behavior in the other, and chaotic states in the two rings, to name a few. The different patterns seem to arise through a sequence of Hopf bifurcations, period-doubling, and halving-period bifurcations. The network architecture seems to explain certain observed features, such as equilibria and the rotating waves, whereas the properties of the chaotic oscillator may explain others, such as the quasiperiodic and chaotic states. We use XPPAUT and MATLAB to compute numerically the relevant states.
Resumo:
Recent embedded processor architectures containing multiple heterogeneous cores and non-coherent caches renewed attention to the use of Software Transactional Memory (STM) as a building block for developing parallel applications. STM promises to ease concurrent and parallel software development, but relies on the possibility of abort conflicting transactions to maintain data consistency, which in turns affects the execution time of tasks carrying transactions. Because of this fact the timing behaviour of the task set may not be predictable, thus it is crucial to limit the execution time overheads resulting from aborts. In this paper we formalise a FIFO-based algorithm to order the sequence of commits of concurrent transactions. Then, we propose and evaluate two non-preemptive and one SRP-based fully-preemptive scheduling strategies, in order to avoid transaction starvation.
Resumo:
With the objective to study the variation of optical properties of rat muscle during optical clearing, we have performed a set of optical measurements from that kind of tissue. The measurements performed were total transmittance, collimated transmittance, specular reflectance and total reflectance. This set of measurements is sufficient to determine diffuse reflectance and absorbance of the sample, also necessary to estimate the optical properties. All the performed measurements and calculated quantities will be used later in inverse Monte Carlo (IMC) simulations to determine the evolution of the optical properties of muscle during treatments with ethylene glycol and glucose. The results obtained with the measurements already provide some information about the optical clearing treatments applied to the muscle and translate the mechanisms of turning the tissue more transparent and sequence of regimes of optical clearing.