2 resultados para scientist
em Instituto Politécnico do Porto, Portugal
Resumo:
As distribuições de Lei de Potência (PL Power Laws), tais como a lei de Pareto e a lei de Zipf são distribuições estatísticas cujos tamanhos dos eventos são inversamente proporcionais à sua frequência. Estas leis de potência são caracterizadas pelas suas longas caudas. Segundo Vilfredo Pareto (1896), engenheiro, cientista, sociólogo e economista italiano, autor da Lei de Pareto, 80% das consequências advêm de 20% das causas. Segundo o mesmo, grande parte da economia mundial segue uma determinada distribuição, onde 80% da riqueza mundial é detida por 20% da população ou 80% da poluição mundial é feita por 20% dos países. Estas percentagens podem oscilar nos intervalos [75-85] e [15-25]. A mesma percentagem poderá ser aplicada à gestão de tempo, onde apenas 20% do tempo dedicado a determinado assunto produzirá cerca de 80% dos resultados obtidos. A lei de Pareto, também designada de regra 80/20, tem aplicações nas várias ciências e no mundo físico, nomeadamente na biodiversidade. O número de ocorrências de fenómenos extremos, aliados ao impacto nas redes de telecomunicações nas situações de catástrofe, no apoio imediato às populações e numa fase posterior de reconstrução, têm preocupado cada vez mais as autoridades oficiais de protecção civil e as operadoras de telecomunicações. O objectivo é o de preparar e adaptarem as suas estruturas para proporcionar uma resposta eficaz a estes episódios. Neste trabalho estuda-se o comportamento de vários fenómenos extremos (eventos críticos) e aproximam-se os dados por uma distribuição de Pareto (Lei de Pareto) ou lei de potência. No final, especula-se sobre a influência dos eventos críticos na utilização das redes móveis. É fundamental que as redes móveis estejam preparadas para lidar com as repercussões de fenómenos deste tipo.
Resumo:
The internal impedance of a wire is the function of the frequency. In a conductor, where the conductivity is sufficiently high, the displacement current density can be neglected. In this case, the conduction current density is given by the product of the electric field and the conductance. One of the aspects the high-frequency effects is the skin effect (SE). The fundamental problem with SE is it attenuates the higher frequency components of a signal. The SE was first verified by Kelvin in 1887. Since then many researchers developed work on the subject and presently a comprehensive physical model, based on the Maxwell equations, is well established. The Maxwell formalism plays a fundamental role in the electromagnetic theory. These equations lead to the derivation of mathematical descriptions useful in many applications in physics and engineering. Maxwell is generally regarded as the 19th century scientist who had the greatest influence on 20th century physics, making contributions to the fundamental models of nature. The Maxwell equations involve only the integer-order calculus and, therefore, it is natural that the resulting classical models adopted in electrical engineering reflect this perspective. Recently, a closer look of some phenomas present in electrical systems and the motivation towards the development of precise models, seem to point out the requirement for a fractional calculus approach. Bearing these ideas in mind, in this study we address the SE and we re-evaluate the results demonstrating its fractional-order nature.