12 resultados para research support

em Instituto Politécnico do Porto, Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Versão integral da revista no link do editor

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ethernet is the most popular LAN technology. Its low price and robustness, resulting from its wide acceptance and deployment, has created an eagerness to expand its responsibilities to the factory-floor, where real-time requirements are to be fulfilled. However, it is difficult to build a real-time control network using Ethernet, because its MAC protocol, the 1-persistent CSMA/CD protocol with the BEB collision resolution algorithm, has unpredictable delay characteristics. Many anticipate that the recent technological advances in Ethernet such as the emerging Fast/Gigabit Ethernet, micro-segmentation and full-duplex operation using switches will also enable it to support time-critical applications. This technical report provides a comprehensive look at the unpredictability inherent to Ethernet and at recent technological advances towards real-time operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Real-time embedded applications require to process large amounts of data within small time windows. Parallelize and distribute workloads adaptively is suitable solution for computational demanding applications. The purpose of the Parallel Real-Time Framework for distributed adaptive embedded systems is to guarantee local and distributed processing of real-time applications. This work identifies some promising research directions for parallel/distributed real-time embedded applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our society relies on energy for most of its activities. One application domain inciding heavily on the energy budget regards the energy consumption in residential and non-residential buildings. The ever increasing needs for energy, resulting from the industrialization of developing countries and from the limited scalability of the traditional technologies for energy production, raises both problems and opportunities. The problems are related to the devastating effects of the greenhouse gases produced by the burning of oil and gas for energy production, and from the dependence of whole countries on companies providing gas and oil. The opportunities are mostly technological, since novel markets are opening for both energy production via renewable sources, and for innovations that can rationalize energy usage. An enticing research effort can be the mixing of these two aspects, by leveraging on ICT technologies to rationalize energy production, acquisition, and consumption. The ENCOURAGE project aims to develop embedded intelligence and integration technologies that will directly optimize energy use in buildings and enable active participation in the future smart grid environment.The primary application domains targeted by the ENCOURAGE project are non-residential buildings (e.g.: campuses) and residential buildings (e.g.: neighborhoods). The goal of the project is to achieve 20% of energy savings through the improved interoperability between various types of energy generation, consumption and storage devices; interbuilding energy exchange; and systematic performance monitoring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a low-cost scaled model of a silo for drying and airing cereal grains. It allows the control and monitor of several parameters associated to the silo's operation, through a remote accessible infrastructure. The scaled model consists of a 2.50 m wide × 2.10 m long plant with all control and monitor capacities provided by micro-Web servers. An application running on the micro-Web servers enables storing all parameters in a data basis for later analysis. The implemented model aims to support a remote experimentation facility for technological education, research-oriented tutorials, and industrial applications. Given the low-cost requirement, this remote facility can be easily replicated in other institutions to support a network of remote labs, which encompasses the concurrent access of several users (e.g. students).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the emergence of low-power wireless hardware new ways of communication were needed. In order to standardize the communication between these low powered devices the Internet Engineering Task Force (IETF) released the 6LoWPAN stand- ard that acts as an additional layer for making the IPv6 link layer suitable for the lower-power and lossy networks. In the same way, IPv6 Routing Protocol for Low- Power and Lossy Networks (RPL) has been proposed by the IETF Routing Over Low power and Lossy networks (ROLL) Working Group as a standard routing protocol for IPv6 routing in low-power wireless sensor networks. The research performed in this thesis uses these technologies to implement a mobility process. Mobility management is a fundamental yet challenging area in low-power wireless networks. There are applications that require mobile nodes to exchange data with a xed infrastructure with quality-of-service guarantees. A prime example of these applications is the monitoring of patients in real-time. In these scenarios, broadcast- ing data to all access points (APs) within range may not be a valid option due to the energy consumption, data storage and complexity requirements. An alternative and e cient option is to allow mobile nodes to perform hand-o s. Hand-o mechanisms have been well studied in cellular and ad-hoc networks. However, low-power wireless networks pose a new set of challenges. On one hand, simpler radios and constrained resources ask for simpler hand-o schemes. On the other hand, the shorter coverage and higher variability of low-power links require a careful tuning of the hand-o parameters. In this work, we tackle the problem of integrating smart-HOP within a standard protocol, speci cally RPL. The simulation results in Cooja indicate that the pro- posed scheme minimizes the hand-o delay and the total network overhead. The standard RPL protocol is simply unable to provide a reliable mobility support sim- ilar to other COTS technologies. Instead, they support joining and leaving of nodes, with very low responsiveness in the existence of physical mobility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Demand response can play a very relevant role in the context of power systems with an intensive use of distributed energy resources, from which renewable intermittent sources are a significant part. More active consumers participation can help improving the system reliability and decrease or defer the required investments. Demand response adequate use and management is even more important in competitive electricity markets. However, experience shows difficulties to make demand response be adequately used in this context, showing the need of research work in this area. The most important difficulties seem to be caused by inadequate business models and by inadequate demand response programs management. This paper contributes to developing methodologies and a computational infrastructure able to provide the involved players with adequate decision support on demand response programs and contracts design and use. The presented work uses DemSi, a demand response simulator that has been developed by the authors to simulate demand response actions and programs, which includes realistic power system simulation. It includes an optimization module for the application of demand response programs and contracts using deterministic and metaheuristic approaches. The proposed methodology is an important improvement in the simulator while providing adequate tools for demand response programs adoption by the involved players. A machine learning method based on clustering and classification techniques, resulting in a rule base concerning DR programs and contracts use, is also used. A case study concerning the use of demand response in an incident situation is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

More than ever, there is an increase of the number of decision support methods and computer aided diagnostic systems applied to various areas of medicine. In breast cancer research, many works have been done in order to reduce false-positives when used as a double reading method. In this study, we aimed to present a set of data mining techniques that were applied to approach a decision support system in the area of breast cancer diagnosis. This method is geared to assist clinical practice in identifying mammographic findings such as microcalcifications, masses and even normal tissues, in order to avoid misdiagnosis. In this work a reliable database was used, with 410 images from about 115 patients, containing previous reviews performed by radiologists as microcalcifications, masses and also normal tissue findings. Throughout this work, two feature extraction techniques were used: the gray level co-occurrence matrix and the gray level run length matrix. For classification purposes, we considered various scenarios according to different distinct patterns of injuries and several classifiers in order to distinguish the best performance in each case described. The many classifiers used were Naïve Bayes, Support Vector Machines, k-nearest Neighbors and Decision Trees (J48 and Random Forests). The results in distinguishing mammographic findings revealed great percentages of PPV and very good accuracy values. Furthermore, it also presented other related results of classification of breast density and BI-RADS® scale. The best predictive method found for all tested groups was the Random Forest classifier, and the best performance has been achieved through the distinction of microcalcifications. The conclusions based on the several tested scenarios represent a new perspective in breast cancer diagnosis using data mining techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi- Agent System for Competitive Electricity Markets), which simulates the electricity markets environment. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. This paper presents the application of a Support Vector Machines (SVM) based approach to provide decision support to electricity market players. This strategy is tested and validated by being included in ALBidS and then compared with the application of an Artificial Neural Network, originating promising results. The proposed approach is tested and validated using real electricity markets data from MIBEL - Iberian market operator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wind speed forecasting has been becoming an important field of research to support the electricity industry mainly due to the increasing use of distributed energy sources, largely based on renewable sources. This type of electricity generation is highly dependent on the weather conditions variability, particularly the variability of the wind speed. Therefore, accurate wind power forecasting models are required to the operation and planning of wind plants and power systems. A Support Vector Machines (SVM) model for short-term wind speed is proposed and its performance is evaluated and compared with several artificial neural network (ANN) based approaches. A case study based on a real database regarding 3 years for predicting wind speed at 5 minutes intervals is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the TEC4SEA research infrastructure created in Portugal to support research, development, and validation of marine technologies. It is a multidisciplinary open platform, capable of supporting research, development, and test of marine robotics, telecommunications, and sensing technologies for monitoring and operating in the ocean environment. Due to the installed research facilities and its privileged geographic location, it allows fast access to deep sea, and can support multidisciplinary research, enabling full validation and evaluation of technological solutions designed for the ocean environment. It is a vertically integrated infrastructure, in the sense that it possesses a set of skills and resources which range from pure conceptual research to field deployment missions, with strong industrial and logistic capacities in the middle tier of prototype production. TEC4SEA is open to the entire scientific and enterprise community, with a free access policy for researchers affiliated with the research units that ensure its maintenance and sustainability. The paper describes the infrastructure in detail, and discusses associated research programs, providing a strategic vision for deep sea research initiatives, within the context of both the Portuguese National Ocean Strategy and European Strategy frameworks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Presented at INForum - Simpósio de Informática (INFORUM 2015). 7 to 8, Sep, 2015. Covilhã, Portugal.