19 resultados para repeat synchronization
em Instituto Politécnico do Porto, Portugal
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Introduction Myocardial Perfusion Imaging (MPI) is a very important tool in the assessment of Coronary Artery Disease ( CAD ) patient s and worldwide data demonstrate an increasingly wider use and clinical acceptance. Nevertheless, it is a complex process and it is quite vulnerable concerning the amount and type of possible artefacts, some of them affecting seriously the overall quality and the clinical utility of the obtained data. One of the most in convenient artefacts , but relatively frequent ( 20% of the cases ) , is relate d with patient motion during image acquisition . Mostly, in those situations, specific data is evaluated and a decisi on is made between A) accept the results as they are , consider ing that t he “noise” so introduced does not affect too seriously the final clinical information, or B) to repeat the acquisition process . Another possib ility could be to use the “ Motion Correcti on Software” provided within the software package included in any actual gamma camera. The aim of this study is to compare the quality of the final images , obtained after the application of motion correction software and after the repetition of image acqui sition. Material and Methods Thirty cases of MPI affected by Motion Artefacts and repeated , were used. A group of three, independent (blinded for the differences of origin) expert Nuclear Medicine Clinicians had been invited to evaluate the 30 sets of thre e images - one set for each patient - being ( A) original image , motion uncorrected , (B) original image, motion corrected, and (C) second acquisition image, without motion . The results so obtained were statistically analysed . Results and Conclusion Results obtained demonstrate that the use of the Motion Correction Software is useful essentiall y if the amplitude of movement is not too important (with this specific quantification found hard to define precisely , due to discrepancies between clinicians and other factors , namely between one to another brand); when that is not the case and the amplitude of movement is too important , the n the percentage of agreement between clinicians is much higher and the repetition of the examination is unanimously considered ind ispensable.
Resumo:
A família de proteínas Shank é o principal conjunto de proteinas de suporte e está localizada na densidade pós-sináptica das sinapses excitatórias. Existem 3 genes na família Shank, Shank1, Shank2 e Shank3 e são caracterizados por múltiplos domínios repetidos de anquirina próximo ao N-terminal seguido pelos domínios Src homologo 3 e PDZ, uma região longa rica em prolina e um domínio de motivo α estéril próximo ao C-terminal. Shank proteínas conectam duas subunidades de receptors glutamatérgicos, recetores NMDA e recetores metabotrópicos de glutamato do tipo-I (mGluRs). O domínio PDZ da Shank conecta-se ao C-terminal do GKAP e este, liga-se, ao complexo recetor PSD-95-NMDA. Por outro lado, a proteína Homer interage com o domínio rico em prolina para confirmar a associação entre a proteína Shank com o mGluR tipo-I. A proteína específica em estudo, Shank3, é haploinsuficiente em pacientes com sindrome Phelan-McDermid devido à deleções no braço comprido do cromossoma 22 levando à danos intelectuais, ausência ou atraso no discurso, comportamentos semelhantes ao autismo, hipotonia e características dismórficas. Neste trabalho, investigamos o papel da Shank3 na função sináptica para compreender a relação entre alterações nesta proteína e as características neurológicas presente em Pacientes com síndrome Phelan-McDermid. Foram utilizados dois modelos diferentes, ratinhos knockout Shank3 e hiPSC de pacientes com PMS. Ratinhos geneticamente modificados são ferramentas uteis no estudo de genes e na compreensão dos mecanismos que experiências in vitro não são capazes de reproduzir, mas de maneira a compreender melhor as patologias humanas, decidimos trabalhar também com células humanas. Os fibroblastos dos pacientes com síndrome Phelan-McDermid fora reprogramados em hiPS cells, diferenciados em neurónios e comparados com os neurónios obtidos a partir de doadores saudavéis e da mesma idade. A reprogramação em iPSC foi realizada por infecção de lentivirus com quatro genes de reprogramação OCT4, c-MYC, SOX2 e KFL4 para posteriormente serem diferenciados em neurónios, com cada passo sendo positivamente confirmado através de marcadores neuronais. Através dos neurónios diferenciados, analisamos a expressão de proteínas sinápticas. Pacientes com haploinsuficiencia na proteína Shank3 apresentam níveis elevados de proteína mGluR5 e decrescidos de proteína Homer sugerindo que a haploinsuficiencia leva a desregulação do complexo mGluR5-Homer-Shank3 conduzindo também, a defeitos na maturação sináptica. Assim, a expressão da proteína mGluR5 está alterada nos pacientes com PMS podendo estar relacionada com defeitos encontrados na diferenciação neuronal e maturação sináptica observados nos neurónios de pacientes. Conclusivamente, iPS cells representam um modelo fundamental no estudo da proteína Shank3 e a sua influência no sindrome de Phelan-McDermid.
Resumo:
Serious games are starting to attain a higher role as tools for learning in various contexts, but in particular in areas such as education and training. Due to its characteristics, such as rules, behavior simulation and feedback to the player's actions, serious games provide a favorable learning environment where errors can occur without real life penalty and students get instant feedback from challenges. These challenges are in accordance with the intended objectives and will self-adapt and repeat according to the student’s difficulty level. Through motivating and engaging environments, which serve as base for problem solving and simulation of different situations and contexts, serious games have a great potential to aid players developing professional skills. But, how do we certify the acquired knowledge and skills? With this work we intend to propose a methodology to establish a relationship between the game mechanics of serious games and an array of competences for certification, evaluating the applicability of various aspects in the design and development of games such as the user interfaces and the gameplay, obtaining learning outcomes within the game itself. Through the definition of game mechanics combined with the necessary pedagogical elements, the game will ensure the certification. This paper will present a matrix of generic skills, based on the European Framework of Qualifications, and the definition of the game mechanics necessary for certification on tour guide training context. The certification matrix has as reference axes: skills, knowledge and competencies, which describe what the students should learn, understand and be able to do after they complete the learning process. The guides-interpreters welcome and accompany tourists on trips and visits to places of tourist interest and cultural heritage such as museums, palaces and national monuments, where they provide various information. Tour guide certification requirements include skills and specific knowledge about foreign languages and in the areas of History, Ethnology, Politics, Religion, Geography and Art of the territory where it is inserted. These skills are communication, interpersonal relationships, motivation, organization and management. This certification process aims to validate the skills to plan and conduct guided tours on the territory, demonstrate knowledge appropriate to the context and finally match a good group leader. After defining which competences are to be certified, the next step is to delineate the expected learning outcomes, as well as identify the game mechanics associated with it. The game mechanics, as methods invoked by agents for interaction with the game world, in combination with game elements/objects allows multiple paths through which to explore the game environment and its educational process. Mechanics as achievements, appointments, progression, reward schedules or status, describe how game can be designed to affect players in unprecedented ways. In order for the game to be able to certify tour guides, the design of the training game will incorporate a set of theoretical and practical tasks to acquire skills and knowledge of various transversal themes. For this end, patterns of skills and abilities in acquiring different knowledge will be identified.
Resumo:
Radio interference drastically affects the performance of sensor-net communications, leading to packet loss and reduced energy-efficiency. As an increasing number of wireless devices operates on the same ISM frequencies, there is a strong need for understanding and debugging the performance of existing sensornet protocols under interference. Doing so requires a low-cost flexible testbed infrastructure that allows the repeatable generation of a wide range of interference patterns. Unfortunately, to date, existing sensornet testbeds lack such capabilities, and do not permit to study easily the coexistence problems between devices sharing the same frequencies. This paper addresses the current lack of such an infrastructure by using off-the-shelf sensor motes to record and playback interference patterns as well as to generate customizable and repeat-able interference in real-time. We propose and develop JamLab: a low-cost infrastructure to augment existing sensornet testbeds with accurate interference generation while limiting the overhead to a simple upload of the appropriate software. We explain how we tackle the hardware limitations and get an accurate measurement and regeneration of interference, and we experimentally evaluate the accuracy of JamLab with respect to time, space, and intensity. We further use JamLab to characterize the impact of interference on sensornet MAC protocols.
Resumo:
Synchronization is a challenging and important issue for time-sensitive Wireless Sensor Networks (WSN) since it requires a mutual spatiotemporal coordination between the nodes. In that concern, the IEEE 802.15.4/ZigBee protocols embody promising technologies for WSNs, but are still ambiguous on how to efficiently build synchronized multiple-cluster networks, specifically for the case of cluster-tree topologies. In fact, the current IEEE 802.15.4/ZigBee specifications restrict the synchronization to beacon-enabled (by the generation of periodic beacon frames) star networks, while they support multi-hop networking in mesh topologies, but with no synchronization. Even though both specifications mention the possible use of cluster-tree topologies, which combine multi-hop and synchronization features, the description on how to effectively construct such a network topology is missing. This paper tackles this issue by unveiling the ambiguities regarding the use of the cluster-tree topology and proposing a synchronization mechanism based on Time Division Beacon Scheduling (TDBS) to build cluster-tree WSNs. In addition, we propose a methodology for efficiently managing duty-cycles in every cluster, ensuring the fairest use of bandwidth resources. The feasibility of the TDBS mechanism is clearly demonstrated through an experimental test-bed based on our open-source implementation of the IEEE 802.15.4/ZigBee protocols.
Resumo:
While the IEEE 802.15.4/Zigbee protocol stack is being considered as a promising technology for low-cost low-power Wireless Sensor Networks (WSNs), several issues in the standard specifications are still open. One of those ambiguous issues is how to build a synchronized multi-hop cluster-tree network, which is quite suitable for ensuring QoS support in WSNs. In fact, the current IEEE 802.15.4/Zigbee specifications restrict the synchronization in the beacon-enabled mode (by the generation of periodic beacon frames) to star-based networks, while it supports multi-hop networking using the peer-to-peer mesh topology, but with no synchronization. Even though both specifications mention the possible use of cluster-tree topologies, which combine multihop and synchronization features, the description on how to effectively construct such a network topology is missing. This paper tackles this problem, unveils the ambiguities regarding the use of the cluster-tree topology and proposes a synchronization mechanism based on Time Division Beacon Scheduling to construct cluster-tree WSNs. We also propose a methodology for an efficient duty cycle management in each router (cluster-head) of a cluster-tree WSN that ensures the fairest use of bandwidth resources. The feasibility of the proposal is clearly demonstrated through an experimental test bed based on our own implementation of the IEEE 802.15.4/Zigbee protocol.
Resumo:
We propose a wireless medium access control (MAC) protocol that provides static-priority scheduling of messages in a guaranteed collision-free manner. Our protocol supports multiple broadcast domains, resolves the wireless hidden terminal problem and allows for parallel transmissions across a mesh network. Arbitration of messages is achieved without the notion of a master coordinating node, global clock synchronization or out-of-band signaling. The protocol relies on bit-dominance similar to what is used in the CAN bus except that in order to operate on a wireless physical layer, nodes are not required to receive incoming bits while transmitting. The use of bit-dominance efficiently allows for a much larger number of priorities than would be possible using existing wireless solutions. A MAC protocol with these properties enables schedulability analysis of sporadic message streams in wireless multihop networks.
Resumo:
The recently standardized IEEE 802.15.4/Zigbee protocol stack offers great potentials for ubiquitous and pervasive computing, namely for Wireless Sensor Networks (WSNs). However, there are still some open and ambiguous issues that turn its practical use a challenging task. One of those issues is how to build a synchronized multi-hop cluster-tree network, which is quite suitable for QoS support in WSNs. In fact, the current IEEE 802.15.4/Zigbee specifications restrict the synchronization in the beacon-enabled mode (by the generation of periodic beacon frames) to star-based networks, while it supports multi-hop networking using the peer-to-peer mesh topology, but with no synchronization. Even though both specifications mention the possible use of cluster-tree topologies, which combine multi-hop and synchronization features, the description on how to effectively construct such a network topology is missing. This paper tackles this problem, unveils the ambiguities regarding the use of the cluster-tree topology and proposes two collision-free beacon frame scheduling schemes. We strongly believe that the results provided in this paper trigger a significant step towards the practical and efficient use of IEEE 802.15.4/Zigbee cluster-tree networks.
Resumo:
The recently standardized IEEE 802.15.4/Zigbee protocol stack offers great potentials for ubiquitous and pervasive computing, namely for Wireless Sensor Networks (WSNs). However, there are still some open and ambiguous issues that turn its practical use a challenging task. One of those issues is how to build a synchronized multi-hop cluster-tree network, which is quite suitable for QoS support in WSNs. In fact, the current IEEE 802.15.4/Zigbee specifications restrict the synchronization in the beacon-enabled mode (by the generation of periodic beacon frames) to star-based networks, while it supports multi-hop networking using the peer-to-peer mesh topology, but with no synchronization. Even though both specifications mention the possible use of cluster-tree topologies, which combine multi-hop and synchronization features, the description on how to effectively construct such a network topology is missing. This report tackles this problem, unveils the ambiguities regarding the use of the cluster-tree topology and proposes two collisionfree beacon frame scheduling schemes.
Resumo:
Structural health monitoring has long been identified as a prominent application of Wireless Sensor Networks (WSNs), as traditional wired-based solutions present some inherent limitations such as installation/maintenance cost, scalability and visual impact. Nevertheless, there is a lack of ready-to-use and off-the-shelf WSN technologies that are able to fulfill some most demanding requirements of these applications, which can span from critical physical infrastructures (e.g. bridges, tunnels, mines, energy grid) to historical buildings or even industrial machinery and vehicles. Low-power and low-cost yet extremely sensitive and accurate accelerometer and signal acquisition hardware and stringent time synchronization of all sensors data are just examples of the requirements imposed by most of these applications. This paper presents a prototype system for health monitoring of civil engineering structures that has been jointly conceived by a team of civil, and electrical and computer engineers. It merges the benefits of standard and off-the-shelf (COTS) hardware and communication technologies with a minimum set of custom-designed signal acquisition hardware that is mandatory to fulfill all application requirements.
Resumo:
Remote Labs are an emergent educational resource in Engineering, which addresses the remote delivery of practical contents, i. e. remote experiments, through the web. This resource may either be used as a support for e-learning courses in Engineering or Science, in the cases where on-campus lab work is not possible, or as a complement to face-to-face lab classes, allowing the students to repeat a given experiment on a remote fashion, without time restrictions.
Resumo:
A implementação da evolução tecnológica no setor da construção tem se caracterizado pelo aparecimento de novas tecnologias que dinamizam os processos de troca de informação entre os vários intervenientes no ciclo de vida do empreendimento. O surgimento da tecnologia Building Information Modeling - BIM assente na modelação paramétrica e na interoperabilidade suportada em ficheiros de padrão aberto (IFC) pressupõem um novo paradigma na forma como são tratados os processos de troca de informação entre os vários intervenientes no ciclo de vida dos empreendimentos. Com base no BIM o Construction Operations Building Information Exchange – COBie, é outra tecnologia recente que recolhe informações não geométricas associadas ao modelo e em conjunto com a informação geométrica produzida pelo BIM fazem parte dos documentos de entrega para a fase Facility Management – FM. O objetivo da presente dissertação centrou-se no estudo da evolução de um modelo BIM de construção para a gestão de empreendimento. Foi desenvolvido o estudo de um modelo protótipo que incidiu na utilização de softwares para verificação e aplicação das tecnologias COBie e BIM e também foi sincronizado com a fase FM. Da aplicação dos requisitos COBie e modelação BIM foram extraídas informações geométricas e não geométricas preenchidas nas folhas de trabalho COBie. As principais conclusões do estudo realizado foram que as tecnologias COBie e BIM têm pouca implantação a nível nacional e a sua integração dinamiza os processos, reduzindo custos e aumentando a qualidade da informação fornecida.
Resumo:
Oceans - San Diego, 2013
Resumo:
À medida que são feitas modificações nas legislações em vigor em relação às energias renováveis, de forma a incentivar o uso destas, surge a necessidade de sincronização do consumo da instalação com a sua própria produção. As empresas líderes de mercado já possuem soluções que permitem a recolha de dados das instalações fotovoltaicas para posterior monitorização e disponibilização ao cliente. Contudo, estas soluções possuem pontos negativos tais como o preço e limitações na potência instalada permitida. Neste contexto, este documento apresenta a descrição de uma solução que serve como uma alternativa muito mais barata às soluções apresentadas pelas principais marcas mundiais no âmbito desta área, além de ser a única solução disponível desenvolvida em território nacional. Como prova da funcionalidade da solução, são descritos e apresentados diferentes tipos de testes, que simulam a interação de um utilizador com a solução desenvolvida, levados a cabo em instalações solares fotovoltaicas reais, sendo os seus resultados analisados e evidenciando a facilidade de utilização desta solução.