13 resultados para random forest data analysis

em Instituto Politécnico do Porto, Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Controlled fires in forest areas are frequently used in most Mediterranean countries as a preventive technique to avoid severe wildfires in summer season. In Portugal, this forest management method of fuel mass availability is also used and has shown to be beneficial as annual statistical reports confirm that the decrease of wildfires occurrence have a direct relationship with the controlled fire practice. However prescribed fire can have serious side effects in some forest soil properties. This work shows the changes that occurred in some forest soils properties after a prescribed fire action. The experiments were carried out in soil cover over a natural site of Andaluzitic schist, in Gramelas, Caminha, Portugal, that had not been burn for four years. The composed soil samples were collected from five plots at three different layers (0-3cm, 3-6cm and 6-18cm) during a three-year monitoring period after the prescribed burning. Principal Component Analysis was used to reach the presented conclusions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The industrial activity is inevitably associated with a certain degradation of the environmental quality, because is not possible to guarantee that a manufacturing process can be totally innocuous. The eco-efficiency concept is globally accepted as a philosophy of entreprise management, that encourages the companies to become more competitive, innovative and environmentally responsible by promoting the link between its companies objectives for excellence and its objectives of environmental excellence issues. This link imposes the creation of an organizational methodology where the performance of the company is concordant with the sustainable development. The main propose of this project is to apply the concept of eco-efficiency to the particular case of the metallurgical and metal workshop industries through the development of the particular indicators needed and to produce a manual of procedures for implementation of the accurate solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the creation and development of technological schools directly linked to the business community and to higher public education. Establishing themselves as the key interface between the two sectors they make a signigicant contribution by having a greater competitive edge when faced with increasing competition in the tradional markets. The development of new business strategies supported by references of excellence, quality and competitiveness also provides a good link between the estalishment of partnerships aiming at the qualification of education boards at a medium level between the technological school and higher education with a technological foundation. We present a case study as an example depicting the success of Escola Tecnológica de Vale de Cambra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This document presents a tool able to automatically gather data provided by real energy markets and to generate scenarios, capture and improve market players’ profiles and strategies by using knowledge discovery processes in databases supported by artificial intelligence techniques, data mining algorithms and machine learning methods. It provides the means for generating scenarios with different dimensions and characteristics, ensuring the representation of real and adapted markets, and their participating entities. The scenarios generator module enhances the MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) simulator, endowing a more effective tool for decision support. The achievements from the implementation of the proposed module enables researchers and electricity markets’ participating entities to analyze data, create real scenarios and make experiments with them. On the other hand, applying knowledge discovery techniques to real data also allows the improvement of MASCEM agents’ profiles and strategies resulting in a better representation of real market players’ behavior. This work aims to improve the comprehension of electricity markets and the interactions among the involved entities through adequate multi-agent simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beyond the classical statistical approaches (determination of basic statistics, regression analysis, ANOVA, etc.) a new set of applications of different statistical techniques has increasingly gained relevance in the analysis, processing and interpretation of data concerning the characteristics of forest soils. This is possible to be seen in some of the recent publications in the context of Multivariate Statistics. These new methods require additional care that is not always included or refered in some approaches. In the particular case of geostatistical data applications it is necessary, besides to geo-reference all the data acquisition, to collect the samples in regular grids and in sufficient quantity so that the variograms can reflect the spatial distribution of soil properties in a representative manner. In the case of the great majority of Multivariate Statistics techniques (Principal Component Analysis, Correspondence Analysis, Cluster Analysis, etc.) despite the fact they do not require in most cases the assumption of normal distribution, they however need a proper and rigorous strategy for its utilization. In this work, some reflections about these methodologies and, in particular, about the main constraints that often occur during the information collecting process and about the various linking possibilities of these different techniques will be presented. At the end, illustrations of some particular cases of the applications of these statistical methods will also be presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

More than ever, there is an increase of the number of decision support methods and computer aided diagnostic systems applied to various areas of medicine. In breast cancer research, many works have been done in order to reduce false-positives when used as a double reading method. In this study, we aimed to present a set of data mining techniques that were applied to approach a decision support system in the area of breast cancer diagnosis. This method is geared to assist clinical practice in identifying mammographic findings such as microcalcifications, masses and even normal tissues, in order to avoid misdiagnosis. In this work a reliable database was used, with 410 images from about 115 patients, containing previous reviews performed by radiologists as microcalcifications, masses and also normal tissue findings. Throughout this work, two feature extraction techniques were used: the gray level co-occurrence matrix and the gray level run length matrix. For classification purposes, we considered various scenarios according to different distinct patterns of injuries and several classifiers in order to distinguish the best performance in each case described. The many classifiers used were Naïve Bayes, Support Vector Machines, k-nearest Neighbors and Decision Trees (J48 and Random Forests). The results in distinguishing mammographic findings revealed great percentages of PPV and very good accuracy values. Furthermore, it also presented other related results of classification of breast density and BI-RADS® scale. The best predictive method found for all tested groups was the Random Forest classifier, and the best performance has been achieved through the distinction of microcalcifications. The conclusions based on the several tested scenarios represent a new perspective in breast cancer diagnosis using data mining techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex industrial plants exhibit multiple interactions among smaller parts and with human operators. Failure in one part can propagate across subsystem boundaries causing a serious disaster. This paper analyzes the industrial accident data series in the perspective of dynamical systems. First, we process real world data and show that the statistics of the number of fatalities reveal features that are well described by power law (PL) distributions. For early years, the data reveal double PL behavior, while, for more recent time periods, a single PL fits better into the experimental data. Second, we analyze the entropy of the data series statistics over time. Third, we use the Kullback–Leibler divergence to compare the empirical data and multidimensional scaling (MDS) techniques for data analysis and visualization. Entropy-based analysis is adopted to assess complexity, having the advantage of yielding a single parameter to express relationships between the data. The classical and the generalized (fractional) entropy and Kullback–Leibler divergence are used. The generalized measures allow a clear identification of patterns embedded in the data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives : The purpose of this article is to find out differences between surveys using paper and online questionnaires. The author has deep knowledge in the case of questions concerning opinions in the development of survey based research, e.g. the limits of postal and online questionnaires. Methods : In the physician studies carried out in 1995 (doctors graduated in 1982-1991), 2000 (doctors graduated in 1982-1996), 2005 (doctors graduated in 1982-2001), 2011 (doctors graduated in 1977-2006) and 457 family doctors in 2000, were used paper and online questionnaires. The response rates were 64%, 68%, 64%, 49% and 73%, respectively. Results : The results of the physician studies showed that there were differences between methods. These differences were connected with using paper-based questionnaire and online questionnaire and response rate. The online-based survey gave a lower response rate than the postal survey. The major advantages of online survey were short response time; very low financial resource needs and data were directly loaded in the data analysis software, thus saved time and resources associated with the data entry process. Conclusions : The current article helps researchers with planning the study design and choosing of the right data collection method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catastrophic events, such as wars and terrorist attacks, tornadoes and hurricanes, earthquakes, tsunamis, floods and landslides, are always accompanied by a large number of casualties. The size distribution of these casualties has separately been shown to follow approximate power law (PL) distributions. In this paper, we analyze the statistical distributions of the number of victims of catastrophic phenomena, in particular, terrorism, and find double PL behavior. This means that the data sets are better approximated by two PLs instead of a single one. We plot the PL parameters, corresponding to several events, and observe an interesting pattern in the charts, where the lines that connect each pair of points defining the double PLs are almost parallel to each other. A complementary data analysis is performed by means of the computation of the entropy. The results reveal relationships hidden in the data that may trigger a future comprehensive explanation of this type of phenomena.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prescribed fire is a common forest management tool used in Portugal to reduce the fuel load availability and minimize the occurrence of wildfires. In addition, the use of this technique also causes an impact to ecosystems. In this presentation we propose to illustrate some results of our project in two forest sites, both located in Northwest Portugal, where the effect of prescribed fire on soil properties were recorded during a period of 6 months. Changes in soil moisture, organic matter, soil pH and iron, were examined by Principal Component Analysis multivariate statistics technique in order to determine impact of prescribed fire on these soil properties in these two different types of soils and determine the period of time that these forest soils need to recover to their pre-fire conditions, if they can indeed recover. Although the time allocated to this study does not allow for a widespread conclusion, the data analysis clearly indicates that the pH values are positively correlated with iron values at both sites. In addition, geomorphologic differences between both sampling sites, Gramelas and Anjos, are relevant as the soils’ properties considered have shown different performances in time. The use of prescribed fire produced a lower impact in soils originated from more amended bedrock and therefore with a ticker humus covering (Gramelas) than in more rocky soils with less litter covering (Anjos) after six months after the prescribed fire occurrence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mestrado em Engenharia Informática - Área de Especialização em Tecnologias do Conhecimento e Decisão

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the Realistic Scenarios Generator (RealScen), a tool that processes data from real electricity markets to generate realistic scenarios that enable the modeling of electricity market players’ characteristics and strategic behavior. The proposed tool provides significant advantages to the decision making process in an electricity market environment, especially when coupled with a multi-agent electricity markets simulator. The generation of realistic scenarios is performed using mechanisms for intelligent data analysis, which are based on artificial intelligence and data mining algorithms. These techniques allow the study of realistic scenarios, adapted to the existing markets, and improve the representation of market entities as software agents, enabling a detailed modeling of their profiles and strategies. This work contributes significantly to the understanding of the interactions between the entities acting in electricity markets by increasing the capability and realism of market simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Harnessing idle PCs CPU cycles, storage space and other resources of networked computers to collaborative are mainly fixated on for all major grid computing research projects. Most of the university computers labs are occupied with the high puissant desktop PC nowadays. It is plausible to notice that most of the time machines are lying idle or wasting their computing power without utilizing in felicitous ways. However, for intricate quandaries and for analyzing astronomically immense amounts of data, sizably voluminous computational resources are required. For such quandaries, one may run the analysis algorithms in very puissant and expensive computers, which reduces the number of users that can afford such data analysis tasks. Instead of utilizing single expensive machines, distributed computing systems, offers the possibility of utilizing a set of much less expensive machines to do the same task. BOINC and Condor projects have been prosperously utilized for solving authentic scientific research works around the world at a low cost. In this work the main goal is to explore both distributed computing to implement, Condor and BOINC, and utilize their potency to harness the ideal PCs resources for the academic researchers to utilize in their research work. In this thesis, Data mining tasks have been performed in implementation of several machine learning algorithms on the distributed computing environment.