17 resultados para public bidding
em Instituto Politécnico do Porto, Portugal
Resumo:
In the sequence of the recent financial and economic crisis, the recent public debt accumulation is expected to hamper considerably business cycle stabilization, by enlarging the budgetary consequences of the shocks. This paper analyses how the average level of public debt in a monetary union shapes optimal discretionary fiscal and monetary stabilization policies and affects stabilization welfare. We use a two-country micro-founded New-Keynesian model, where a benevolent central bank and the fiscal authorities play discretionary policy games under different union-average debt-constrained scenarios. We find that high debt levels shift monetary policy assignment from inflation to debt stabilization, making cooperation welfare superior to noncooperation. Moreover, when average debt is too high, welfare moves directly (inversely) with debt-to-output ratios for the union and the large country (small country) under cooperation. However, under non-cooperation, higher average debt levels benefit only the large country.
Resumo:
Metalearning is a subfield of machine learning with special pro-pensity for dynamic and complex environments, from which it is difficult to extract predictable knowledge. The field of study of this work is the electricity market, which due to the restructuring that recently took place, became an especially complex and unpredictable environment, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. This paper presents the development of a metalearner, applied to the decision support of electricity markets’ negotia-tion entities. The proposed metalearner takes advantage on several learning algorithms implemented in ALBidS, an adaptive learning system that pro-vides decision support to electricity markets’ participating players. Using the outputs of each different strategy as inputs, the metalearner creates its own output, considering each strategy with a different weight, depending on its individual quality of performance. The results of the proposed meth-od are studied and analyzed using MASCEM - a multi-agent electricity market simulator that models market players and simulates their operation in the market. This simulator provides the chance to test the metalearner in scenarios based on real electricity market´s data.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simulator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM provides several dynamic strategies for agents’ behavior. This paper presents a method that aims to provide market players with strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses a reinforcement learning algorithm to learn from experience how to choose the best from a set of possible bids. These bids are defined accordingly to the cost function that each producer presents.
Resumo:
In recent decades, all over the world, competition in the electric power sector has deeply changed the way this sector’s agents play their roles. In most countries, electric process deregulation was conducted in stages, beginning with the clients of higher voltage levels and with larger electricity consumption, and later extended to all electrical consumers. The sector liberalization and the operation of competitive electricity markets were expected to lower prices and improve quality of service, leading to greater consumer satisfaction. Transmission and distribution remain noncompetitive business areas, due to the large infrastructure investments required. However, the industry has yet to clearly establish the best business model for transmission in a competitive environment. After generation, the electricity needs to be delivered to the electrical system nodes where demand requires it, taking into consideration transmission constraints and electrical losses. If the amount of power flowing through a certain line is close to or surpasses the safety limits, then cheap but distant generation might have to be replaced by more expensive closer generation to reduce the exceeded power flows. In a congested area, the optimal price of electricity rises to the marginal cost of the local generation or to the level needed to ration demand to the amount of available electricity. Even without congestion, some power will be lost in the transmission system through heat dissipation, so prices reflect that it is more expensive to supply electricity at the far end of a heavily loaded line than close to an electric power generation. Locational marginal pricing (LMP), resulting from bidding competition, represents electrical and economical values at nodes or in areas that may provide economical indicator signals to the market agents. This article proposes a data-mining-based methodology that helps characterize zonal prices in real power transmission networks. To test our methodology, we used an LMP database from the California Independent System Operator for 2009 to identify economical zones. (CAISO is a nonprofit public benefit corporation charged with operating the majority of California’s high-voltage wholesale power grid.) To group the buses into typical classes that represent a set of buses with the approximate LMP value, we used two-step and k-means clustering algorithms. By analyzing the various LMP components, our goal was to extract knowledge to support the ISO in investment and network-expansion planning.
Resumo:
The very particular characteristics of electricity markets, require deep studies of the interactions between the involved players. MASCEM is a market simulator developed to allow studying electricity market negotiations. This paper presents a new proposal for the definition of MASCEM players’ strategies to negotiate in the market. The proposed methodology is implemented as a multiagent system, using reinforcement learning algorithms to provide players with the capabilities to perceive the changes in the environment, while adapting their bids formulation according to their needs, using a set of different techniques that are at their disposal. This paper also presents a methodology to define players’ models based on the historic of their past actions, interpreting how their choices are affected by past experience, and competition.
Resumo:
The short article attempts to make some very brief reflections on the effects a lack of public policies positively discriminatory in terms of public employment retirement. In particular, the observation of the absurd contradiction between the average age of retirement at the time of death (for men and women) and the average pension time for men and women in public employment in Portugal.
Resumo:
The concentrations of 18 polycyclic aromatic hydrocarbons (PAHs) were determined in three commercially valuable fish species (sardine, Sardina pilchardus; chub mackerel, Scomber japonicus; and horse mackerel, Trachurus trachurus) from the Atlantic Ocean. Specimens were collected seasonally during 2007–2009. Only low molecular weight PAHs were detected, namely, naphthalene, acenaphthene, fluorene and phenanthrene. Chub mackerel (1.80–19.90 microg/kg ww) revealed to be significantly more contaminated than horse mackerel (2.73–10.0 microg/kg ww) and sardine (2.29–14.18 microg/kg ww). Inter-specific and inter-season comparisons of PAHs bioaccumulation were statistically assessed. The more relevant statistical correlations were observed between PAH amounts and total fat content (significant positive relationships, p < 0.05), and season (sardine displayed higher amounts in autumn–winter while the mackerel species showed globally the inverse behavior). The health risks by consumption of these species were assessed and shown to present no threat to public health concerning PAH intakes.
Resumo:
Infiltration galleries are among the oldest known means used for small public water fountains. Owing to its ancestral origin they are usually associated with high quality water. Thirty-one compounds, including pesticides and estrogens from different chemical families, were analysed in waters from infiltration galleries collected in Alto Douro Demarcated Wine region (North of Portugal). A total of twelve compounds were detected in the water samples. Nine of these compounds are described as presenting evidence or potential evidence of interfering with the hormone system of humans and wildlife. Although concentrations of the target analytes were relatively low, many of them below their limit of quantification, four compounds were above quantification limit and two of them even above the legal limit of 0.1 lg/L: dimethoate (30.38 ng/L), folpet (64.35 ng/L), terbuthylazine-desethyl (22.28 to 292.36 ng/L) and terbuthylazine (22.49 to 369.33 ng/L).
Resumo:
Electricity markets are complex environments, involving a large number of different entities, with specific characteristics and objectives, making their decisions and interacting in a dynamic scene. Game-theory has been widely used to support decisions in competitive environments; therefore its application in electricity markets can prove to be a high potential tool. This paper proposes a new scenario analysis algorithm, which includes the application of game-theory, to evaluate and preview different scenarios and provide players with the ability to strategically react in order to exhibit the behavior that better fits their objectives. This model includes forecasts of competitor players’ actions, to build models of their behavior, in order to define the most probable expected scenarios. Once the scenarios are defined, game theory is applied to support the choice of the action to be performed. Our use of game theory is intended for supporting one specific agent and not for achieving the equilibrium in the market. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. The scenario analysis algorithm has been tested within MASCEM and our experimental findings with a case study based on real data from the Iberian Electricity Market are presented and discussed.
Resumo:
The advantages of networking are widely known in many areas (from business to personal ones). One particular area where networks have also proved their benefits is education. Taking the secondary school education level into account, some successful cases can be found in literature. In this paper we describe a particular remote lab network supporting physical experiments accessible to students of institutions geographically separated. The network architecture and application examples of using some of the available remote experiments are illustrated in detail.
Resumo:
We analyse the relationship between the privatization of a public firm and government preferences for tax revenue in a Stackelberg duopoly with the public firm as the leader. We assume that the government payoff is given by a weighted sum of tax revenue and the sum of consumer and producer surplus. We get that if the government puts a sufficiently larger weight on tax revenue than on the sum of both surpluses, it will not privatize the public firm. In contrast, if the government puts a moderately larger weight on tax revenue than on the sum of both surpluses, it will privatize the public firm.
Resumo:
We study whether privatization of a public firm improves (or deteriorates) the environment in a mixed Stackelberg duopoly with the public firm as the leader. We assume that each firm can prevent pollution by undertaking abatement measures. We get that, since in the mixed market the industry output is higher than in the private market, the abatement levels are also higher in the mixed market, and, thus, environmental tax rate in the mixed duopoly is higher than that in the privatized duopoly. Furthermore, the environment is more damaged in the mixed than in the private market. The overall effect on the social welfare is that it will becomes higher in the private than in the mixed market.
Resumo:
Given the significant impact that cultural events may have in local communities and the inherent organization complexity, it is important to understand their specificities. Most of the times cultural events disregard marketing and often marketing is distant from art. Thus an analysis of an inside perspective might bring significant returns to the organization of such an event. This paper considers the three editions (2011, 2012 and 2013) of a cultural event – Noc Noc – organized by a local association in the city of Guimarães, Portugal. Its format is based in analogous events, as Noc Noc intends to convert everyday spaces (homes, commercial outlets and a number of other buildings) into cultural spaces, processed and transformed by artists, hosts and audiences. By interviewing a sample of people (20) who have hosted this cultural event, sometimes doubling as artists, and by experiencing the three editions of the event, this paper illustrates how the internal public understands this particular cultural event, analyzing specifically their motivations, ways of acting and participating, as well as their relationship with the public, with the organization of the event and with art in general. Results support that artists and hosts motivations must be identified in a timely and appropriate moment, as well as their views of this particular cultural event, in order to keep them participating, since low budget cultural events such as this one may have a key role in small scale cities.
Resumo:
Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi- Agent System for Competitive Electricity Markets), which simulates the electricity markets environment. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. This paper presents the application of a Support Vector Machines (SVM) based approach to provide decision support to electricity market players. This strategy is tested and validated by being included in ALBidS and then compared with the application of an Artificial Neural Network, originating promising results. The proposed approach is tested and validated using real electricity markets data from MIBEL - Iberian market operator.