9 resultados para proximity query, collision test, distance test, data compression, triangle test
em Instituto Politécnico do Porto, Portugal
Resumo:
To avoid additional hardware deployment, indoor localization systems have to be designed in such a way that they rely on existing infrastructure only. Besides the processing of measurements between nodes, localization procedure can include the information of all available environment information. In order to enhance the performance of Wi-Fi based localization systems, the innovative solution presented in this paper considers also the negative information. An indoor tracking method inspired by Kalman filtering is also proposed.
Resumo:
This master’s thesis addresses the maintenance of pre-computed structures, which store a frequent or expensive query, for the nested bag data type in the high level work-flow language Pig Latin. This thesis defines a model suitable to accommodate incremental expressions over nested bags on Pig Latin. Afterwards, the partitioned normal form for sets is extended with further restrictions, in order to accommodate the nested bag model, allow the Pig Latin nest and unnest operators revert each other, and create a suitable environment to the incremental computations. Subsequently, the extended operators – extended union and extended difference – are defined for the nested bag data model with the partitioned normal form for bags (PNF Bag) restriction, and semantics for the extended operators are given. Finally, incremental data propagation expressions are proposed for the nest and unnest operators on the data model proposed with the PNF Bag restriction, and the proof of correctness is given.
Resumo:
Bipedal gaits have been classified on the basis of the group symmetry of the minimal network of identical differential equations (alias cells) required to model them. Primary bipedal gaits (e.g., walk, run) are characterized by dihedral symmetry, whereas secondary bipedal gaits (e.g., gallop-walk, gallop- run) are characterized by a lower, cyclic symmetry. This fact has been used in tests of human odometry (e.g., Turvey et al. in P Roy Soc Lond B Biol 276:4309–4314, 2009, J Exp Psychol Hum Percept Perform 38:1014–1025, 2012). Results suggest that when distance is measured and reported by gaits from the same symmetry class, primary and secondary gaits are comparable. Switching symmetry classes at report compresses (primary to secondary) or inflates (secondary to primary) measured distance, with the compression and inflation equal in magnitude. The present research (a) extends these findings from overground locomotion to treadmill locomotion and (b) assesses a dynamics of sequentially coupled measure and report phases, with relative velocity as an order parameter, or equilibrium state, and difference in symmetry class as an imperfection parameter, or detuning, of those dynamics. The results suggest that the symmetries and dynamics of distance measurement by the human odometer are the same whether the odometer is in motion relative to a stationary ground or stationary relative to a moving ground.
Resumo:
The mode III interlaminar fracture of carbon/epoxy laminates was evaluated with the edge crack torsion (ECT) test. Three-dimensional finite element analyses were performed in order to select two specimen geometries and an experimental data reduction scheme. Test results showed considerable non-linearity before the maximum load point and a significant R-curve effect. These features prevented an accurate definition of the initiation point. Nevertheless, analyses of non-linearity zones showed two likely initiation points corresponding to GIIIc values between 850 and 1100 J/m2 for both specimen geometries. Although any of these values is realistic, the range is too broad, thus showing the limitations of the ECT test and the need for further research.
Resumo:
The wide use of antibiotics in aquaculture has led to the emergence of resistant microbial species. It should be avoided/minimized by controlling the amount of drug employed in fish farming. For this purpose, the present work proposes test-strip papers aiming at the detection/semi-quantitative determination of organic drugs by visual comparison of color changes, in a similar analytical procedure to that of pH monitoring by universal pH paper. This is done by establishing suitable chemical changes upon cellulose, attributing the paper the ability to react with the organic drug and to produce a color change. Quantitative data is also enabled by taking a picture and applying a suitable mathematical treatment to the color coordinates given by the HSL system used by windows. As proof of concept, this approach was applied to oxytetracycline (OXY), one of the antibiotics frequently used in aquaculture. A bottom-up modification of paper was established, starting by the reaction of the glucose moieties on the paper with 3-triethoxysilylpropylamine (APTES). The so-formed amine layer allowed binding to a metal ion by coordination chemistry, while the metal ion reacted after with the drug to produce a colored compound. The most suitable metals to carry out such modification were selected by bulk studies, and the several stages of the paper modification were optimized to produce an intense color change against the concentration of the drug. The paper strips were applied to the analysis of spiked environmental water, allowing a quantitative determination for OXY concentrations as low as 30 ng/mL. In general, this work provided a simple, method to screen and discriminate tetracycline drugs, in aquaculture, being a promising tool for local, quick and cheap monitoring of drugs.
Resumo:
In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.
Resumo:
In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.
Resumo:
Stone masonry is one of the oldest and most worldwide used building techniques. Nevertheless, the structural response of masonry structures is complex and the effective knowledge about their mechanical behaviour is still limited. This fact is particularly notorious when dealing with the description of their out-of-plane behaviour under horizontal loadings, as is the case of the earthquake action. In this context, this paper describes an experimental program, conducted in laboratory environment, aiming at characterizing the out-of-plane behaviour of traditional unreinforced stone masonry walls. In the scope of this campaign, six full-scale sacco stone masonry specimens were fully characterised regarding their most important mechanic, geometric and dynamic features and were tested resorting to two different loading techniques under three distinct vertical pre-compression states; three of the specimens were subjected to an out-of-plane surface load by means of a system of airbags and the remaining were subjected to an out-of-plane horizontal line-load at the top. From the experiments it was possible to observe that both test setups were able to globally mobilize the out-of-plane response of the walls, which presented substantial displacement capacity, with ratios of ultimate displacement to the wall thickness ranging between 26 and 45 %, as well as good energy dissipation capacity. Finally, very interesting results were also obtained from a simple analytical model used herein to compute a set of experimental-based ratios, namely between the maximum stability displacement and the wall thickness for which a mean value of about 60 % was found.
Resumo:
The wide use of antibiotics in aquaculture has led to the emergence of resistant microbial species. It should be avoided/minimized by controlling the amount of drug employed in fish farming. For this purpose, the present work proposes test-strip papers aiming at the detection/semi-quantitative determination of organic drugs by visual comparison of color changes, in a similar analytical procedure to that of pH monitoring by universal pH paper. This is done by establishing suitable chemical changes upon cellulose, attributing the paper the ability to react with the organic drug and to produce a color change. Quantitative data is also enabled by taking a picture and applying a suitable mathematical treatment to the color coordinates given by the HSL system used by windows. As proof of concept, this approach was applied to oxytetracycline (OXY), one of the antibiotics frequently used in aquaculture. A bottom-up modification of paper was established, starting by the reaction of the glucose moieties on the paper with 3-triethoxysilylpropylamine (APTES). The so-formed amine layer allowed binding to a metal ion by coordination chemistry, while the metal ion reacted after with the drug to produce a colored compound. The most suitable metals to carry out such modification were selected by bulk studies, and the several stages of the paper modification were optimized to produce an intense color change against the concentration of the drug. The paper strips were applied to the analysis of spiked environmental water, allowing a quantitative determination for OXY concentrations as low as 30 ng/mL. In general, this work provided a simple, method to screen and discriminate tetracycline drugs, in aquaculture, being a promising tool for local, quick and cheap monitoring of drugs.