46 resultados para pre-emptive self-defence
em Instituto Politécnico do Porto, Portugal
Resumo:
Fieldbus communication networks aim to interconnect sensors, actuators and controllers within distributed computer-controlled systems. Therefore, they constitute the foundation upon which real-time applications are to be implemented. A specific class of fieldbus communication networks is based on a simplified version of token-passing protocols, where each station may transfer, at most, a single message per token visit (SMTV). In this paper, we establish an analogy between non-preemptive task scheduling in single processors and the scheduling of messages on SMTV token-passing networks. Moreover, we clearly show that concepts such as blocking and interference in non-preemptive task scheduling have their counterparts in the scheduling of messages on SMTV token-passing networks. Based on this task/message scheduling analogy, we provide pre-run-time schedulability conditions for supporting real-time messages with SMTV token-passing networks. We provide both utilisation-based and response time tests to perform the pre-run-time schedulability analysis of real-time messages on SMTV token-passing networks, considering RM/DM (rate monotonic/deadline monotonic) and EDF (earliest deadline first) priority assignment schemes
Resumo:
This article introduces schedulability analysis for global fixed priority scheduling with deferred preemption (gFPDS) for homogeneous multiprocessor systems. gFPDS is a superset of global fixed priority pre-emptive scheduling (gFPPS) and global fixed priority non-pre-emptive scheduling (gFPNS). We show how schedulability can be improved using gFPDS via appropriate choice of priority assignment and final non-pre-emptive region lengths, and provide algorithms which optimize schedulability in this way. Via an experimental evaluation we compare the performance of multiprocessor scheduling using global approaches: gFPDS, gFPPS, and gFPNS, and also partitioned approaches employing FPDS, FPPS, and FPNS on each processor.
Resumo:
Building reliable real-time applications on top of commercial off-the-shelf (COTS) components is not a straightforward task. Thus, it is essential to provide a simple and transparent programming model, in order to abstract programmers from the low-level implementation details of distribution and replication. However, the recent trend for incorporating pre-emptive multitasking applications in reliable real-time systems inherently increases its complexity. It is therefore important to provide a transparent programming model, enabling pre-emptive multitasking applications to be implemented without resorting to simultaneously dealing with both system requirements and distribution and replication issues. The distributed embedded architecture using COTS components (DEAR-COTS) architecture has been previously proposed as an architecture to support real-time and reliable distributed computer-controlled systems (DCCS) using COTS components. Within the DEAR-COTS architecture, the hard real-time subsystem provides a framework for the development of reliable real-time applications, which are the core of DCCS applications. This paper presents the proposed framework, and demonstrates how it can be used to support the transparent replication of software components.
Resumo:
In this paper we address the real-time capabilities of P-NET, which is a multi-master fieldbus standard based on a virtual token passing scheme. We show how P-NET’s medium access control (MAC) protocol is able to guarantee a bounded access time to message requests. We then propose a model for implementing fixed prioritybased dispatching mechanisms at each master’s application level. In this way, we diminish the impact of the first-come-first-served (FCFS) policy that P-NET uses at the data link layer. The proposed model rises several issues well known within the real-time systems community: message release jitter; pre-run-time schedulability analysis in non pre-emptive contexts; non-independence of tasks at the application level. We identify these issues in the proposed model and show how results available for priority-based task dispatching can be adapted to encompass priority-based message dispatching in P-NET networks.
Resumo:
The process of immobilization of biological molecules is one of the most important steps in the construction of a biosensor. In the case of DNA, the way it exposes its bases can result in electrochemical signals to acceptable levels. The use of self-assembled monolayer that allows a connection to the gold thiol group and DNA binding to an aldehydic ligand resulted in the possibility of determining DNA hybridization. Immobilized single strand of DNA (ssDNA) from calf thymus pre-formed from alkanethiol film was formed by incubating a solution of 2-aminoethanothiol (Cys) followed by glutaraldehyde (Glu). Cyclic voltammetry (CV) was used to characterize the self-assembled monolayer on the gold electrode and, also, to study the immobilization of ssDNA probe and hybridization with the complementary sequence (target ssDNA). The ssDNA probe presents a well-defined oxidation peak at +0.158 V. When the hybridization occurs, this peak disappears which confirms the efficacy of the annealing and the DNA double helix performing without the presence of electroactive indicators. The use of SAM resulted in a stable immobilization of the ssDNA probe, enabling the hybridization detection without labels. This study represents a promising approach for molecular biosensor with sensible and reproducible results.
Resumo:
Introdução: Programas de self-management têm como objectivo habilitar os pacientes com estratégias necessárias para levar a cabo procedimentos específicos para a patologia. A última revisão sistemática sobre selfmanagament em DPOC foi realizada em 2007, concluindo-se que ainda não era possível fornecer dados claros e suficientes acerca de recomendações sobre a estrutura e conteúdo de programas de self-managament na DPOC. A presente revisão tem o intuito de complementar a análise da revisão anterior, numa tentativa de inferir a influência do ensino do self-management na DPOC. Objectivos: verificar a influência dos programas de self-management na DPOC, em diversos indicadores relacionados com o estado de saúde do paciente e na sua utilização dos serviços de saúde. Estratégia de busca: pesquisa efectuada nas bases de dados PubMed e Cochrane Collaboration (01/01/2007 – 31/08/2010). Palavras-chave: selfmanagement education, self-management program, COPD e pulmonary rehabilitation. Critérios de Selecção: estudos randomizados sobre programas de selfmanagement na DPOC. Extracção e Análise dos Dados: 2 investigadores realizaram, independentemente, a avaliação e extracção de dados de cada artigo. Resultados: foram considerados 4 estudos randomizados em selfmanagement na DPOC nos quais se verificaram benefícios destes programas em diversas variáveis: qualidade de vida a curto e médio prazo, utilização dos diferentes recursos de saúde, adesões a medicação de rotina, controle das exacerbações e diminuição da sintomatologia. Parece não ocorrer alteração na função pulmonar e no uso de medicação de emergência, sendo inconclusivo o seu efeito na capacidade de realização de exercício. Conclusões: programas de self-management aparentam ter impacto positivo na qualidade de vida, recurso a serviços de saúde, adesão à medicação, planos de acção e níveis de conhecimento da DPOC. Discrepâncias nos critérios de selecção das amostras utilizadas, períodos de seguimento desiguais, consistência das variáveis mensuradas, condicionam a informação disponibilizada sobre este assunto.
Resumo:
Metaheuristics performance is highly dependent of the respective parameters which need to be tuned. Parameter tuning may allow a larger flexibility and robustness but requires a careful initialization. The process of defining which parameters setting should be used is not obvious. The values for parameters depend mainly on the problem, the instance to be solved, the search time available to spend in solving the problem, and the required quality of solution. This paper presents a learning module proposal for an autonomous parameterization of Metaheuristics, integrated on a Multi-Agent System for the resolution of Dynamic Scheduling problems. The proposed learning module is inspired on Autonomic Computing Self-Optimization concept, defining that systems must continuously and proactively improve their performance. For the learning implementation it is used Case-based Reasoning, which uses previous similar data to solve new cases. In the use of Case-based Reasoning it is assumed that similar cases have similar solutions. After a literature review on topics used, both AutoDynAgents system and Self-Optimization module are described. Finally, a computational study is presented where the proposed module is evaluated, obtained results are compared with previous ones, some conclusions are reached, and some future work is referred. It is expected that this proposal can be a great contribution for the self-parameterization of Metaheuristics and for the resolution of scheduling problems on dynamic environments.
Resumo:
Scheduling resolution requires the intervention of highly skilled human problemsolvers. This is a very hard and challenging domain because current systems are becoming more and more complex, distributed, interconnected and subject to rapidly changing. A natural Autonomic Computing evolution in relation to Current Computing is to provide systems with Self-Managing ability with a minimum human interference. This paper addresses the resolution of complex scheduling problems using cooperative negotiation. A Multi-Agent Autonomic and Meta-heuristics based framework with self-configuring capabilities is proposed.
Resumo:
Scheduling is a critical function that is present throughout many industries and applications. A great need exists for developing scheduling approaches that can be applied to a number of different scheduling problems with significant impact on performance of business organizations. A challenge is emerging in the design of scheduling support systems for manufacturing environments where dynamic adaptation and optimization become increasingly important. In this paper, we describe a Self-Optimizing Mechanism for Scheduling System through Nature Inspired Optimization Techniques (NIT).
Resumo:
A novel agent-based approach to Meta-Heuristics self-configuration is proposed in this work. Meta-heuristics are examples of algorithms where parameters need to be set up as efficient as possible in order to unsure its performance. This paper presents a learning module for self-parameterization of Meta-heuristics (MHs) in a Multi-Agent System (MAS) for resolution of scheduling problems. The learning is based on Case-based Reasoning (CBR) and two different integration approaches are proposed. A computational study is made for comparing the two CBR integration perspectives. In the end, some conclusions are reached and future work outlined.
Resumo:
This paper presents a negotiation mechanism for Dynamic Scheduling based on Swarm Intelligence (SI). Under the new negotiation mechanism, agents must compete to obtain a global schedule. SI is the general term for several computational techniques which use ideas and get inspiration from the social behaviors of insects and other animals. This work is concerned with negotiation, the process through which multiple selfinterested agents can reach agreement over the exchange of operations on competitive resources.
Resumo:
Agility refers to the manufacturing system ability to rapidly adapt to market and environmental changes in efficient and cost-effective ways. This paper addresses the development of self-organization methods to enhance the operations of a scheduling system, by integrating scheduling system, configuration and optimization into a single autonomic process requiring minimal manual intervention to increase productivity and effectiveness while minimizing complexity for users. We intend to conceptualize real manufacturing systems as interacting autonomous entities in order to build future Decision Support Systems (DSS) for Scheduling in agile manufacturing environments.
Resumo:
In this paper we present a Self-Optimizing module, inspired on Autonomic Computing, acquiring a scheduling system with the ability to automatically select a Meta-heuristic to use in the optimization process, so as its parameterization. Case-based Reasoning was used so the system may be able of learning from the acquired experience, in the resolution of similar problems. From the obtained results we conclude about the benefit of its use.
Resumo:
Scheduling is a critical function that is present throughout many industries and applications. A great need exists for developing scheduling approaches that can be applied to a number of different scheduling problems with significant impact on performance of business organizations. A challenge is emerging in the design of scheduling support systems for manufacturing environments where dynamic adaptation and optimization become increasingly important. At this scenario, self-optimizing arise as the ability of the agent to monitor its state and performance and proactively tune itself to respond to environmental stimuli.