50 resultados para plant carbon
em Instituto Politécnico do Porto, Portugal
Resumo:
Abstract: Preferential flow and transport through macropores affect plant water use efficiency and enhance leaching of agrochemicals and the transport of colloids, thereby increasing the risk for contamination of groundwater resources. The effects of soil compaction, expressed in terms of bulk density (BD), and organic carbon (OC) content on preferential flow and transport were investigated using 150 undisturbed soil cores sampled from 15 × 15–m grids on two field sites. Both fields had loamy textures, but one site had significantly higher OC content. Leaching experiments were conducted in each core by applying a constant irrigation rate of 10 mm h−1 with a pulse application of tritium tracer. Five percent tritium mass arrival times and apparent dispersivities were derived from each of the tracer breakthrough curves and correlated with texture, OC content, and BD to assess the spatial distribution of preferential flow and transport across the investigated fields. Soils from both fields showed strong positive correlations between BD and preferential flow. Interestingly, the relationships between BD and tracer transport characteristics were markedly different for the two fields, although the relationship between BD and macroporosity was nearly identical. The difference was likely caused by the higher contents of fines and OC at one of the fields leading to stronger aggregation, smaller matrix permeability, and a more pronounced pipe-like pore system with well-aligned macropores.
Resumo:
This paper starts with the analysis of the unusual inherence mechanism, from two aspects: accumulating and human error. We put forward twelve factors affected the decision of the emergency treatment plan in practice and summarized the evaluation index system combining with literature data. Then we screened out eighteen representative indicators by used the FDM expert questionnaire in the first phase. Hereafter, we calculated the weight of evaluation index and sorted them by the FAHP expert questionnaire, and came up with the frame of the evaluation rule by combined with the experience. In the end, the evaluation principles are concluded.
Resumo:
Celiac disease is a gluten-induced autoimmune enteropathy characterized by the presence of tissue tranglutaminase (tTG) autoantibodies. A disposable electrochemical immunosensor (EI) for the detection of IgA and IgG type anti-tTG autoantibodies in real patient’s samples is presented. Screen-printed carbon electrodes (SPCE) nanostructurized with carbon nanotubes and gold nanoparticles were used as the transducer surface. This transducer exhibits the excellent characteristics of carbon–metal nanoparticle hybrid conjugation and led to the amplification of the immunological interaction. The immunosensing strategy consisted of the immobilization of tTG on the nanostructured electrode surface followed by the electrochemical detection of the autoantibodies present in the samples using an alkaline phosphatase (AP) labelled anti-human IgA or IgG antibody. The analytical signal was based on the anodic redissolution of enzymatically generated silver by cyclic voltammetry. The results obtained were corroborated with a commercial ELISA kit indicating that the electrochemical immunosensor is a trustful analytical screening tool.
Resumo:
A growth trial with Senegalese Sole (Solea senegalensis Kaup, 1858) juveniles fed with diets containing increasing replacement levels of fishmeal by mixtures of plant protein sources was conducted over 12 weeks. Total fat contents of muscle, liver, viscera, skin, fins and head tissues were determined, as well as fatty acid profiles of muscle and liver (GC-FID analysis). Liver was the preferential local for fat deposition (5.5–10.8% of fat) followed by fins (3.4–6.7% fat). Increasing levels of plant protein in the diets seems to be related to increased levels of total lipids in the liver. Sole muscle is lean (2.4–4.0% fat), with total lipids being similar among treatments. Liver fatty acid profile varied significantly among treatments. Plant protein diets induced increased levels of C16:1 and C18:2 n -6 and a decrease in ARA and EPA levels. Muscle fatty acid profile also evidenced increasing levels of C18:2 n 6, while ARA and DHA remained similar among treatments. Substitution of fishmeal by plant protein is hence possible without major differences on the lipid content and fatty acid profile of the main edible portion of the fish – the muscle.
Resumo:
We report within this paper the development of a fiber-optic based sensor for Hg(II) ions. Fluorescent carbon nanoparticles were synthesized by laser ablation and functionalized with PEG200 and N-acetyl-l-cysteine so they can be anionic in nature. This characteristic facilitated their deposition by the layer-by-layer assembly method into thin alternating films along with a cationic polyelectrolyte, poly(ethyleneimine). Such films could be immobilized onto the tip of a glass optical fiber, allowing the construction of an optical fluorescence sensor. When immobilized on the fiber-optic tip, the resultant sensor was capable of selectively detecting sub-micromolar concentrations of Hg(II) with an increased sensitivity compared to carbon dot solutions. The fluorescence of the carbon dots was quenched by up to 44% by Hg(II) ions and interference from other metal ions was minimal.
Resumo:
The main objective of this study was to characterize the organic matter present in raw water and along the treatment process, as well as its seasonal variation. A natural organic matter fractionation approach has been applied to Lever water treatment plant located in Douro River, in Oporto (Portugal). The process used was based on the sorption of dissolved organic matter in different types of ion exchange resins, DAX-8, DAX-4 and IRA-958, allowing its separation into four fractions: very hydrophobic acids (VHA), slightly hydrophobic acids (SHA), charged hydrophilic (CHA) and hydrophilic neutral (NEU). The dissolved organic carbon (DOC) determination was used to quantify dissolved organic matter. Samples were collected monthly, during approximately one year, from raw water captured at the surface and under the bed of the river, and after each step of the treatment: pre-filtration in sand/anthracite filters, ozonation, coagulation/flocculation, counter current dissolved air flotation and filtration (CoCoDAFF) and chlorination. The NEU fraction showed a seasonal variation, with maximum values in autumn for the sampling points corresponding to raw water captured at the surface and under the bed of the river. It was usually the predominating fraction and did not show a significant decrease throughout the treatment. Nevertheless their low concentration, the same occurred for the CHA and VHA fractions. There was an overall decrease in the SHA fraction throughout the water treatment (especially after CoCoDAFF and ozonation) as well as in the DOC. The TSUVA254 values obtained for raw water generally varied between 2.0 and 4.0 L mgC-1 m-1 and between 0.75 and 1.78 L mgC-1 m-1 for treated water. It was observed a decrease of TSUVA values along the treatment, especially after ozonation. These results may contribute to a further optimization in the process of treating water for human consumption.
Resumo:
O presente trabalho teve como principais objectivos, estudar e optimizar o processo de tratamento do efluente proveniente das máquinas da unidade Cold-press da linha de produção da Empresa Swedwood, caracterizar a solução límpida obtida no tratamento e estudar a sua integração no processo, e por fim caracterizar o resíduo de pasta de cola obtido no tratamento e estudar a possível valorização energética deste resíduo. Após caracterização inicial do efluente e de acordo com os resultados de um estudo prévio solicitado pela Empresa Swedwood a uma empresa externa, decidiu-se iniciar o estudo de tratabilidade do efluente pelo processo físico-químico a coagulação/floculação. No processo de coagulação/floculação estudou-se a aplicabilidade, através de ensaios Jar-test, dos diferentes agentes de coagulação/floculação: a soda cáustica, a cal, o cloreto férrico e o sulfato de alumínio. Os melhores resultados neste processo foram obtidos com a adição de uma dose de cal de 500 mg/Lefluente, seguida da adição de 400 mg/Lefluente de sulfato de alumínio. Contudo, após este tratamento o clarificado obtido não possuía as características necessárias para a sua reintrodução no processo fabril nem para a sua descarga em meio hídrico. Deste modo procedeu-se ao estudo de tratamentos complementares. Nesta segunda fases de estudo testaram-se os seguintes os tratamentos: a oxidação química por Reagente de Fenton, o tratamento biológico por SBR (sequencing batch reactor) e o leito percolador. Da análise dos resultados obtidos nos diferentes tratamentos conclui-se que o tratamento mais eficaz foi o tratamento biológico por SBR com adição de carvão activado. Prevê-se que no final do processo de tratamento o clarificado obtido possa ser descarregado em meio hídrico ou reintroduzido no processo. Como o estudo apenas foi desenvolvido à escala laboratorial, seria útil poder validar os resultados numa escala piloto antes da sua implementação industrial. A partir dos resultados do estudo experimental, procedeu-se ao dimensionamento de uma unidade de tratamento físico-químico e biológico à escala industrial para o tratamento de 20 m3 de efluente produzido na fábrica, numa semana. Dimensionou-se ainda a unidade (leito de secagem) para tratamento das lamas produzidas. Na unidade de tratamento físico-químico (coagulação/floculação) os decantadores estáticos devem possuir o volume útil de 4,8 m3. Sendo necessários semanalmente 36 L da suspensão de cal (Neutrolac 300) e 12,3 L da solução de sulfato de alumínio a 8,3%. Os tanques de armazenamento destes compostos devem possuir 43,2 litros e 96 litros, respectivamente. Nesta unidade estimou-se que são produzidos diariamente 1,4 m3 de lamas. Na unidade de tratamento biológico o reactor biológico deve possuir um volume útil de 6 m3. Para que este processo seja eficaz é necessário fornecer diariamente 2,1 kg de oxigénio. Estima-se que neste processo será necessário efectuar a purga de 325 litros de lamas semanalmente. No final da purga repõe-se o carvão activado, que poderá ser arrastado juntamente com as lamas, adicionando-se 100 mg de carvão por litro de licor misto. De acordo com o volume de lamas produzidos em ambos os tratamentos a área mínima necessária para o leito de secagem é de cerca de 27 m2. A análise económica efectuada mostra que a aquisição do equipamento tem o custo de 22.079,50 euros, o custo dos reagentes necessários neste processo para um ano de funcionamento tem um custo total de 508,50 euros e as necessidades energéticas de 2.008,45 euros.
Resumo:
O presente trabalho tem como objectivo o diagnóstico ambiental da empresa Lacticinios do Paiva, S.A, a avaliação da água do processo e da ETARI e o estudo da fermentação do soro de queijo com o intuito de produção de bioetanol. No diagnóstico ambiental da empresa, observou-se que 18.227.731 litros de leite usados anualmente geram 5.031 ton/ano de queijo, 7.204 ton/ano de soro de queijo, 74.201 m3/ano de efluente liquido, 14 ton/ano de plástico e 20 ton/ano de cartão. Os principais problemas com necessidade de optimização são a recuperação de água das lavagens, avaliação da produção de biogás no digestor anaeróbio, recuperação do volume de leite que é desperdiçado na produção de queijo fresco de longa duração, avaliação da eficiência energética da empresa, valorização das natas e do soro de queijo. Decidiu-se neste trabalho avaliar a possibilidade de reciclagem das águas de lavagem, avaliar o funcionamento da ETARI face à legislação existente e estudar a possibilidade de valorização do soro de queijo. Na avaliação das águas de processo das lavagens para posterior reciclagem, verifica-se que relativamente ao pH e aos sólidos suspensos não existe problema, podendo encarar-se a hipótese de reciclagem directa. No entanto, no que respeita à carga orgânica das águas de lavagem do sistema de ultrafiltração do queijo fresco de longa duração, constata-se que esta não poderia ser utilizada novamente, uma vez que apresenta valores elevados de CQO. Para a sua reutilização, será necessário remover a CQO, hipótese que se estudou com resultados positivos. Verificou-se que, um tratamento por adsorção em carvão activado precedido de microfiltração, reduz a CQO de forma significativa permitindo admitir a hipótese de reciclagem da água, nomeadamente para as 1ª e 3ª águas de lavagem. As outras águas teriam necessidade de mais tempo de contacto com o carvão activado. No sentido de avaliar o funcionamento da ETARI, foram analisadas várias correntes da mesma, em particular a do efluente final, no que respeita a parâmetros como: pH, Sólidos Suspensos Totais, Carência Química de Oxigénio, Carência Bioquímica de Oxigénio, Turvação, Nitratos, Fósforo Total, Azoto Kjeldalh, Azoto Amoniacal e Cloretos. Observou-se que os valores para o efluente final da ETARI são os seguintes: pH compreendido entre [7,21 – 8,69], SST entre [65,3 – 3110] mg/L, CQO entre [92,5 – 711,5] mg/L, CBO5 entre [58 – 161] mg/L, NO3- entre [10,8 – 106,7] mg/L, fósforo total entre [8,3 – 64,3] mg/L, turvação entre [67,7 – 733,3] FTU e cloretos entre [459,9 – 619,81] mg/L; pode-se dizer que os parâmetros analisados se encontram quase sempre dentro da gama de valores impostos pela Câmara Municipal de Lamego pelo que o efluente pode ser lançado no Colector Municipal de Cambres. Relativamente à fermentação alcoólica do soro de queijo, verifica-se que a levedura Kluyveromyces Marxianus consegue degradar praticamente todo o açúcar presente no permeado produzindo assim uma quantidade razoável de etanol. Quando se utilizou a levedura Saccharomyces Cerevisiae, a produção de etanol foi muito reduzida, como esperado, dado que esta levedura apresenta dificuldades na metabolização da lactose. Constatou-se assim que a melhor levedura para a fermentação do permeado do soro de queijo é a Kluyveromyces Marxianus, estimando-se em 150 mg a produção de etanol por L de soro.
Resumo:
The electrooxidative behavior of citalopram (CTL) in aqueous media was studied by cyclic voltammetry (CV) and square-wave voltammetry (SWV) at a glassy-carbon electrode. The electrochemical behaviour of CTL involves two electrons and two protons in the irreversible and diffusion controlled oxidation of the tertiary amine group. The maximum analytical signal was obtained in a phosphate buffer (pH ¼ 8.2). For analytical purposes, an SWV method and a flow-injection analysis (FIA) system with amperometric detection were developed. The optimised SWV method showed a linear range between 1.10 10 5–1.20 10 4 molL 1, with a limit of detection (LOD) of 9.5 10 6 molL 1. Using the FIA method, a linear range between 2.00 10 6–9.00 10 5 molL 1 and an LODof 1.9 10 6 molL 1 were obtained. The validation of both methods revealed good performance characteristics confirming applicability for the quantification of CTL in several pharmaceutical products.
Resumo:
Studies were undertaken to determine the adsorption behavior of α-cypermethrin [R)-α-cyano-3-phenoxybenzyl(1S)-cis- 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate, and (S)-α-cyano-3-phenoxybenzyl (1R)-cis-3-(2,2-dichlorovinyl)-2,2- dimethylcyclopropanecarboxylate] in solutions on granules of cork and activated carbon (GAC). The adsorption studies were carried out using a batch equilibrium technique. A gas chromatograph with an electron capture detector (GC-ECD) was used to analyze α-cypermethrin after solid phase extraction with C18 disks. Physical properties including real density, pore volume, surface area and pore diameter of cork were evaluated by mercury porosimetry. Characterization of cork particles showed variations thereby indicating the highly heterogeneous structure of the material. The average surface area of cork particles was lower than that of GAC. Kinetics adsorption studies allowed the determination of the equilibrium time—24 hours for both cork (1–2 mm and 3–4 mm) and GAC. For the studied α-cypermethrin concentration range, GAC revealed to be a better sorbent. However, adsorption parameters for equilibrium concentrations, obtained through the Langmuir and Freundlich models, showed that granulated cork 1–2 mm have the maximum amount of adsorbed α-cypermethrin (qm) (303 μg/g); followed by GAC (186 μg/g) and cork 3-4 mm (136 μg/g). The standard deviation (SD) values, demonstrate that Freundlich model better describes the α-cypermethrin adsorption phenomena on GAC, while α-cypermethrin adsorption on cork (1-2 mm and 3-4 mm) is better described by the Langmuir. In view of the adsorption results obtained in this study it appears that granulated cork may be a better and a cheaper alternative to GAC for removing α-cypermethrin from water.
Resumo:
An optical fiber sensor for Hg(II) in aqueous solution based on sol–gel immobilized carbon dots nanoparticles functionalized with PEG200 and N-acetyl-l-cysteine is described. This sol–gel method generated a thin (about 750 nm), homogenous and smooth (roughness of 2.7±0.7 a˚ ) filmthat immobilizes the carbon dots and allows reversible sensing of Hg(II) in aqueous solution. A fast (less than 10 s), reversible and stable (the fluorescence intensity measurements oscillate less than 1% after several calibration cycles) sensor system was obtained. The sensor allow the detection of submicron molar concentrations of Hg(II) in aqueous solution. The fluorescence intensity of the immobilized carbon dots is quenched by the presence of Hg(II) with a Stern-Volmer constant (pH = 6.8) of 5.3×105M−1.
Resumo:
This study focused on the development of a sensitive enzymatic biosensor for the determination of pirimicarb pesticide based on the immobilization of laccase on composite carbon paste electrodes. Multi- walled carbon nanotubes(MWCNTs)paste electrode modified by dispersion of laccase(3%,w/w) within the optimum composite matrix(60:40%,w/w,MWCNTs and paraffin binder)showed the best performance, with excellent electron transfer kinetic and catalytic effects related to the redox process of the substrate4- aminophenol. No metal or anti-interference membrane was added. Based on the inhibition of laccase activity, pirimicarb can be determined in the range 9.90 ×10- 7 to 1.15 ×10- 5 molL 1 using 4- aminophenol as substrate at the optimum pH of 5.0, with acceptable repeatability and reproducibility (relative standard deviations lower than 5%).The limit of detection obtained was 1.8 × 10-7 molL 1 (0.04 mgkg 1 on a fresh weight vegetable basis).The high activity and catalytic properties of the laccase- based biosensor are retained during ca. one month. The optimized electroanalytical protocol coupled to the QuEChERS methodology were applied to tomato and lettuce samples spiked at three levels; recoveries ranging from 91.0±0.1% to 101.0 ± 0.3% were attained. No significant effects in the pirimicarb electro- analysis were observed by the presence of pro-vitamin A, vitamins B1 and C,and glucose in the vegetable extracts. The proposed biosensor- based pesticide residue methodology fulfills all requisites to be used in implementation of food safety programs.
Resumo:
A novel enzymatic biosensor for carbamate pesticides detection was developed through the direct immobilization of Trametes versicolor laccase on graphene doped carbon paste electrode functionalized with Prussianblue films (LACC/PB/GPE). Graphene was prepared by graphite sonication-assisted exfoliation and characterized by transmission electron microscopy and X-ray photoelectron spectro- scopy. The Prussian blue film electrodeposited onto graphene doped carbon paste electrode allowed considerable reduction of the charge transfer resistance and of the capacitance of the device.The combined effects of pH, enzyme concentration and incubation time on biosensor response were optimized using a 23 full-factorial statistical design and response surface methodology. Based on the inhibition of laccase activity and using 4-aminophenol as redox mediator at pH 5.0,LACC/PB/GPE exhibited suitable characteristics in terms of sensitivity, intra-and inter-day repeatability (1.8–3.8% RSD), reproducibility (4.1 and 6.3%RSD),selectivity(13.2% bias at the higher interference: substrate ratios tested),accuracy and stability(ca. twenty days)for quantification of five carbamates widely applied on tomato and potato crops.The attained detection limits ranged between 5.2×10−9 mol L−1(0.002 mg kg−1 w/w for ziram)and 1.0×10−7 mol L−1 (0.022 mg kg−1 w/w for carbofuran).Recovery values for the two tested spiking levels ranged from 90.2±0.1%(carbofuran)to 101.1±0.3% (ziram) for tomato and from 91.0±0.1%(formetanate)to 100.8±0.1%(ziram)for potato samples.The proposed methodology is appropriate to enable testing pesticide levels in food samples to fit with regulations and food inspections.
Resumo:
This paper addresses the impact of the CO2 opportunity cost on the wholesale electricity price in the context of the Iberian electricity market (MIBEL), namely on the Portuguese system, for the period corresponding to the Phase II of the European Union Emission Trading Scheme (EU ETS). In the econometric analysis a vector error correction model (VECM) is specified to estimate both long–run equilibrium relations and short–run interactions between the electricity price and the fuel (natural gas and coal) and carbon prices. The model is estimated using daily spot market prices and the four commodities prices are jointly modelled as endogenous variables. Moreover, a set of exogenous variables is incorporated in order to account for the electricity demand conditions (temperature) and the electricity generation mix (quantity of electricity traded according the technology used). The outcomes for the Portuguese electricity system suggest that the dynamic pass–through of carbon prices into electricity prices is strongly significant and a long–run elasticity was estimated (equilibrium relation) that is aligned with studies that have been conducted for other markets.
Resumo:
An electrochemical sensor has been developed for the determination of the herbicide bentazone, based on a GC electrode modified by a combination of multiwalled carbon nanotubes (MWCNT) with b-cyclodextrin (b-CD) incorporated in a polyaniline film. The results indicate that the b-CD/MWCNT modified GC electrode exhibits efficient electrocatalytic oxidation of bentazone with high sensitivity and stability. A cyclic voltammetric method to determine bentazone in phosphate buffer solution at pH 6.0, was developed, without any previous extraction, clean-up, or derivatization steps, in the range of 10–80 mmolL 1, with a detection limit of 1.6 mmolL 1 in water. The results were compared with those obtained by an established HPLC technique. No statistically significant differences being found between both methods.