19 resultados para pineapple leaf fibre

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interest in zero-valent iron nanoparticles has been increasing significantly since the development of a green production method in which extracts from natural products or wastes are used. However, this field of application is yet poorly studied and lacks knowledge that allows the full understanding of the production and application processes. The aim of the present work was to evaluate the viability of the utilization of several tree leaves to produce extracts which are capable of reducing iron(III) in aqueous solution to form nZVIs. The quality of the extracts was evaluated concerning their antioxidant capacity. The results show that: i) dried leaves produce extracts with higher antioxidant capacities than non-dried leaves, ii) the most favorable extraction conditions (temperature, contact time, and volume:mass ratio) were identified for each leaf, iii) with the aim of developing a green, but also low-cost,method waterwas chosen as solvent, iv) the extracts can be classified in three categories according to their antioxidant capacity (expressed as Fe(II) concentration): >40 mmol L−1; 20–40 mmol L−1; and 2–10 mmol L−1; with oak, pomegranate and green tea leaves producing the richest extracts, and v) TEManalysis proves that nZVIs (d=10–20 nm) can be produced using the tree leaf extracts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Folk medicine is a relevant and effective part of indigenous healthcare systems which are, in practice, totally dependent on traditional healers. An outstanding coincidence between indigenous medicinal plant uses and scientifically proved pharmacological properties of several phytochemicals has been observed along the years. This work focused on the leaves of a medicinal plant traditionally used for therapeutic benefits (Angolan Cymbopogon citratus), in order to evaluate their nutritional value. The bioactive phytochemical composition and antioxidant activity of leaf extracts prepared with different solvents (water, methanol and ethanol) were also evaluated. The plant leaves contained ~60% of carbohydrates, protein (~20%), fat (~5%), ash (~4%) and moisture (~9%). The phytochemicals screening revealed the presence of tannins, flavonoids, and terpenoids in all extracts. Methanolic extracts also contained alkaloids and steroids. Several methods were used to evaluate total antioxidant capacity of the different extracts (DPPH; NO; and H2O2 scavenging assays, reducing power, and FRAP). Ethanolic extracts presented a significantly higher antioxidant activity (p < 0.05) except for FRAP, in which the best results were achieved by the aqueous extracts. Methanolic extracts showed the lowest radical scavenging activities for both DPPH; and NO; radicals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adhesive bonding has become more efficient in the last few decades due to the adhesives developments, granting higher strength and ductility. On the other hand, natural fibre composites have recently gained interest due to the low cost and density. It is therefore essential to predict the fracture behavior of joints between these materials, to assess the feasibility of joining or repairing with adhesives. In this work, the tensile fracture toughness (Gc n) of adhesive joints between natural fibre composites is studied, by bonding with a ductile adhesive and co-curing. Conventional methods to obtain Gc n are used for the co-cured specimens, while for the adhesive within the bonded joint, the J-integral is considered. For the J-integral calculation, an optical measurement method is developed for the evaluation of the crack tip opening and adherends rotation at the crack tip during the test, supported by a Matlab sub-routine for the automated extraction of these quantities. As output of this work, an optical method that allows an easier and quicker extraction of the parameters to obtain Gc n than the available methods is proposed (by the J-integral technique), and the fracture behaviour in tension of bonded and co-cured joints in jute-reinforced natural fibre composites is also provided for the subsequent strength prediction. Additionally, for the adhesively- bonded joints, the tensile cohesive law of the adhesive is derived by the direct method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the adequacy and the benefit of incorporating glass fibre reinforced polymer (GFRP) waste materials into polyester based mortars, as sand aggregates and filler replacements, are assessed. Different weight contents of mechanically recycled GFRP wastes with two particle size grades are included in the formulation of new materials. In all formulations, a polyester resin matrix was modified with a silane coupling agent in order to improve binder-aggregates interfaces. The added value of the recycling solution was assessed by means of both flexural and compressive strengths of GFRP admixed mortars with regard to those of the unmodified polymer mortars. Planning of experiments and data treatment were performed by means of full factorial design and through appropriate statistical tools based on analyses of variance (ANOVA). Results show that the partial replacement of sand aggregates by either type of GFRP recyclates improves the mechanical performance of resultant polymer mortars. In the case of trial formulations modified with the coarser waste mix, the best results are achieved with 8% waste weight content, while for fine waste based polymer mortars, 4% in weight of waste content leads to the higher increases on mechanical strengths. This study clearly identifies a promising waste management solution for GFRP waste materials by developing a cost-effective end-use application for the recyclates, thus contributing to a more sustainable fibre-reinforced polymer composites industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Towpregs based on different fibres and thermoplastic matrices were processed for highly demanding and more commercial applications by different composite processing technologies. In the technologies used, compression moulding and pultrusion, the final composite pr ocessing parameters were studied in order to obtain composites with adequate properties at industrial compatible production rates. The produced towpregs were tested to verify its polymer content and degree of impregnation. The obtained results have shown t hat the coating line enabled to produce, with efficiency and industrial scale speed rates, thermoplastic matrix towpregs that may be used to manufacture composites for advanced and larger volume commercial markets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of fibre reinforced plastics – FRP’s – in structures is under a considerable increase. Advantages of their use are related with their low weight, high strength and stiffness. The improvement of the dynamic characteristics has been profitable for aeronautics, automobile, railway, naval and sporting goods industries. Drilling is a widely used machining technique as it is needed to assemble parts in a structure. This is a unique machining process, characterized by the existence of two different mechanisms: extrusion by the drill chisel edge and cutting by the rotating cutting lips. Drilling raises particular problems that can reduce mechanical and fatigue strength of the parts. In this work, quasi-isotropic hybrid laminates with 25% of carbon fibre reinforced plies and 4 mm thickness are produced, tested and drilled. Three different drill geometries are compared. Results considered are the interlaminar fracture toughness in Mode I – GIc –, thrust force during drilling and delamination extent after drilling. A bearing test is performed to evaluate tool influence on the load carrying capacity of the plate. Results consider the influence of drill geometry on delamination. A correlation linking plate damage to bearing test results is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drilling of carbon fibre/epoxy laminates is usually carried out using standard drills. However, it is necessary to adapt the processes and/or tooling as the risk of delamination, or other damages, is high. These problems can affect mechanical properties of produced parts, therefore, lower reliability. In this paper, four different drills – three commercial and a special step (prototype) – are compared in terms of thrust force during drilling and delamination. In order to evaluate damage, enhanced radiography is applied. The resulting images were then computational processed using a previously developed image processing and analysis platform. Results show that the prototype drill had encouraging results in terms of maximum thrust force and delamination reduction. Furthermore, it is possible to state that a correct choice of drill geometry, particularly the use of a pilot hole, a conservative cutting speed – 53 m/min – and a low feed rate – 0.025 mm/rev – can help to prevent delamination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distinctive characteristics of carbon fibre reinforced plastics, like low weight or high specific strength, had broadened their use to new fields. Due to the need of assembly to structures, machining operations like drilling are frequent. In result of composites inhomogeneity, this operation can lead to different damages that reduce mechanical strength of the parts in the connection area. From these damages, delamination is the most severe. A proper choice of tool and cutting parameters can reduce delamination substantially. In this work the results obtained with five different tool geometries are compared. Conclusions show that the choice of an adequate drill can reduce thrust forces, thus delamination damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a new waste management solution for thermoset glass fibre reinforced polymer (GFRP) based products was assessed. Mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the prospective added-value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. Different GFRP waste admixed mortar formulations were analyzed varying the content, between 4% up to 12% in weight, of GFRP powder and fibre mix waste. The effect of incorporation of a silane coupling agent was also assessed. Design of experiments and data treatment was accomplished through implementation of full factorial design and analysis of variance ANOVA. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacity of GFRP waste admixed mortars with regard to unmodified polymer mortars. The key findings of this study showed a viable technological option for improving the quality of polyester based mortars and highlight a potential cost-effective waste management solution for thermoset composite materials in the production of sustainable concrete-polymer based products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development and applications of thermoset polymeric composites, namely fibre reinforced plastics (FRP), have shifted in the last decades more and more into the mass market [1]. Despite of all advantages associated to FRP based products, the increasing production and consume also lead to an increasing amount of FRP wastes, either end-of-lifecycle products, or scrap and by-products generated by the manufacturing process itself. Whereas thermoplastic FRPs can be easily recycled, by remelting and remoulding, recyclability of thermosetting FRPs constitutes a more difficult task due to cross-linked nature of resin matrix. To date, most of the thermoset based FRP waste is being incinerated or landfilled, leading to negative environmental impacts and supplementary added costs to FRP producers and suppliers. This actual framework is putting increasing pressure on the industry to address the options available for FRP waste management, being an important driver for applied research undertaken cost efficient recycling methods. [1-2]. In spite of this, research on recycling solutions for thermoset composites is still at an elementary stage. Thermal and/or chemical recycling processes, with partial fibre recovering, have been investigated mostly for carbon fibre reinforced plastics (CFRP) due to inherent value of carbon fibre reinforcement; whereas for glass fibre reinforced plastics (GFRP), mechanical recycling, by means of milling and grinding processes, has been considered a more viable recycling method [1-2]. Though, at the moment, few solutions in the reuse of mechanically-recycled GFRP composites into valueadded products are being explored. Aiming filling this gap, in this study, a new waste management solution for thermoset GFRP based products was assessed. The mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the potential added value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. The use of a cementless concrete as host material for GFRP recyclates, instead of a conventional Portland cement based concrete, presents an important asset in avoiding the eventual incompatibility problems arisen from alkalis silica reaction between glass fibres and cementious binder matrix. Additionally, due to hermetic nature of resin binder, polymer based concretes present greater ability for incorporating recycled waste products [3]. Under this scope, different GFRP waste admixed polymer mortar (PM) formulations were analyzed varying the size grading and content of GFRP powder and fibre mix waste. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacities of modified mortars with regard to waste-free polymer mortars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral content (phosphorous (P), potassium (K), sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn) and copper (Cu)) of eight ready-to-eat baby leaf vegetables was determined. The samples were subjected to microwave-assisted digestion and the minerals were quantified by High-Resolution Continuum Source Atomic Absorption Spectrometry (HR-CS-AAS) with flame and electrothermal atomisation. The methods were optimised and validated producing low LOQs, good repeatability and linearity, and recoveries, ranging from 91% to 110% for the minerals analysed. Phosphorous was determined by a standard colorimetric method. The accuracy of the method was checked by analysing a certified reference material; results were in agreement with the quantified value. The samples had a high content of potassium and calcium, but the principal mineral was iron. The mineral content was stable during storage and baby leaf vegetables could represent a good source of minerals in a balanced diet. A linear discriminant analysis was performed to compare the mineral profile obtained and showed, as expected, that the mineral content was similar between samples from the same family. The Linear Discriminant Analysis was able to discriminate different samples based on their mineral profile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pea-shoots are a new option as ready-to-eat baby-leaf vegetable. However, data about the nutritional composition and the shelf-life stability of these leaves, especially their phytonutrient composition is scarce. In this work, the macronutrient, micronutrient and phytonutrients profile of minimally processed pea shoots were evaluated at the beginning and at the end of a 10-day storage period. Several physicochemical characteristics (color, pH, total soluble solids, and total titratable acidity) were also monitored. Standard AOAC methods were applied in the nutritional value evaluation, while chromatographic methods with UV–vis and mass detection were used to analyze free forms of vitamins (HPLC-DAD-ESI-MS/MS), carotenoids (HPLC-DAD-APCI-MSn) and flavonoid compounds (HPLC-DAD-ESI-MSn). Atomic absorption spectrometry (HR-CS-AAS) was employed to characterize the mineral content of the leaves. As expected, pea leaves had a high water (91.5%) and low fat (0.3%) and carbohydrate (1.9%) contents, being a good source of dietary fiber (2.1%). Pea shoots showed a high content of vitamins C, E and A, potassium and phosphorous compared to other ready-to-eat green leafy vegetables. The carotenoid profile revealed a high content of β-carotene and lutein, typical from green leafy vegetables. The leaves had a mean flavonoid content of 329 mg/100 g of fresh product, mainly composed by glycosylated quercetin and kaempferol derivatives. Pea shoots kept their fresh appearance during the storage being color maintained throughout the shelf-life. The nutritional composition was in general stable during storage, showing some significant (p < 0.05) variation in certain water-soluble vitamins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intensification of agricultural productivity is an important challenge worldwide. However, environmental stressors can provide challenges to this intensification. The progressive occurrence of the cyanotoxins cylindrospermopsin (CYN) and microcystin-LR (MC-LR) as a potential consequence of eutrophication and climate change is of increasing concern in the agricultural sector because it has been reported that these cyanotoxins exert harmful effects in crop plants. A proteomic-based approach has been shown to be a suitable tool for the detection and identification of the primary responses of organisms exposed to cyanotoxins. The aim of this study was to compare the leaf-proteome profiles of lettuce plants exposed to environmentally relevant concentrations of CYN and a MC-LR/CYN mixture. Lettuce plants were exposed to 1, 10, and 100 lg/l CYN and a MC-LR/CYN mixture for five days. The proteins of lettuce leaves were separated by twodimensional electrophoresis (2-DE), and those that were differentially abundant were then identified by matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDI-TOF/TOF MS). The biological functions of the proteins that were most represented in both experiments were photosynthesis and carbon metabolism and stress/defense response. Proteins involved in protein synthesis and signal transduction were also highly observed in the MC-LR/CYN experiment. Although distinct protein abundance patterns were observed in both experiments, the effects appear to be concentration-dependent, and the effects of the mixture were clearly stronger than those of CYN alone. The obtained results highlight the putative tolerance of lettuce to CYN at concentrations up to 100 lg/l. Furthermore, the combination of CYN with MC-LR at low concentrations (1 lg/l) stimulated a significant increase in the fresh weight (fr. wt) of lettuce leaves and at the proteomic level resulted in the increase in abundance of a high number of proteins. In contrast, many proteins exhibited a decrease in abundance or were absent in the gels of the simultaneous exposure to 10 and 100 lg/l MC-LR/CYN. In the latter, also a significant decrease in the fr. wt of lettuce leaves was obtained. These findings provide important insights into the molecular mechanisms of the lettuce response to CYN and MC-LR/CYN and may contribute to the identification of potential protein markers of exposure and proteins that may confer tolerance to CYN and MC-LR/CYN. Furthermore, because lettuce is an important crop worldwide, this study may improve our understanding of the potential impact of these cyanotoxins on its quality traits (e.g., presence of allergenic proteins).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyanobacteria deteriorate the water quality and are responsible for emerging outbreaks and epidemics causing harmful diseases in Humans and animals because of their toxins. Microcystin-LR (MCT) is one of the most relevant cyanotoxin, being the most widely studied hepatotoxin. For safety purposes, the World Health Organization recommends a maximum value of 1 μg L−1 of MCT in drinking water. Therefore, there is a great demand for remote and real-time sensing techniques to detect and quantify MCT. In this work a Fabry–Pérot sensing probe based on an optical fibre tip coated with a MCT selective thin film is presented. The membranes were developed by imprinting MCT in a sol–gel matrix that was applied over the tip of the fibre by dip coating. The imprinting effect was obtained by curing the sol–gel membrane, prepared with (3-aminopropyl) trimethoxysilane (APTMS), diphenyl-dimethoxysilane (DPDMS), tetraethoxysilane (TEOS), in the presence of MCT. The imprinting effect was tested by preparing a similar membrane without template. In general, the fibre Fabry–Pérot with a Molecular Imprinted Polymer (MIP) sensor showed low thermal effect, thus avoiding the need of temperature control in field applications. It presented a linear response to MCT concentration within 0.3–1.4 μg L−1 with a sensitivity of −12.4 ± 0.7 nm L μg−1. The corresponding Non-Imprinted Polymer (NIP) displayed linear behaviour for the same MCT concentration range, but with much less sensitivity, of −5.9 ± 0.2 nm L μg−1. The method shows excellent selectivity for MCT against other species co-existing with the analyte in environmental waters. It was successfully applied to the determination of MCT in contaminated samples. The main advantages of the proposed optical sensor include high sensitivity and specificity, low-cost, robustness, easy preparation and preservation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural toxins such as those produced by freshwater cyanobacteria have been regarded as an emergent environmental threat. However, the impact of these water contaminants in agriculture is not yet fully understood. The aim of this work was to investigate microcystin-LR (MC-LR) toxicity in Lycopersicon esculentum and the toxin accumulation in this horticultural crop. Adult plants (2 month-old) grown in a greenhouse environment were exposed for 2 weeks to either pure MC-LR (100 μg/L) or Microcystis aeruginosa crude extracts containing 100 μg/L MC-LR. Chlorophyll fluorescence was measured, leaf proteome investigated with two-dimensional gel electrophoresis and Matrix Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF)/TOF, and toxin bioaccumulation assessed by liquid chromatography-mass spectrometry (LC-MS)/MS. Variations in several protein markers (ATP synthase subunits, Cytochrome b6-f complex iron-sulfur, oxygen-evolving enhancer proteins) highlight the decrease of the capacity of plants to synthesize ATP and to perform photosynthesis, whereas variations in other proteins (ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit and ribose-5-phosphate isomerase) suggest an increase of carbon fixation and decrease of carbohydrate metabolism reactions in plants exposed to pure MC-LR and cyanobacterial extracts, respectively. MC-LR was found in roots (1635.21 μg/kg fw), green tomatoes (5.15–5.41 μg/kg fw), mature tomatoes (10.52–10.83 μg/kg fw), and leaves (12,298.18 μg/kg fw). The results raise concerns relative to food safety and point to the necessity of monitoring the bioaccumulation of water toxins in agricultural systems affected by cyanotoxin contamination.