6 resultados para peripheral blood
em Instituto Politécnico do Porto, Portugal
Resumo:
Despite its rigid structure, bone is a dynamic tissue that is in constant remodeling. This process requires the action of the bone-resorbing osteoclasts and the bone-synthesing osteoblasts. One of the adverse effects attributed to some antihypertensive agents is the ability to alter normal bone metabolism. However, their effective actions on human bone cells remain to be clarified. In this work, the effects of five calcium channel blockers, a class of antihypertensive drugs (AHDs), were investigated on osteoclastic differentiation. Osteoclastic cell cultures were established from precursor cells isolated from human peripheral blood, and were maintained in the absence (control) or in the presence of 10-8-10-4 M of different AHDs (amlodipine, felodipine, diltiazem, lercanidipine and nifedipine). Cell cultures were characterized throughout a 21 day period for tartrate-resistant acid phosphatase (TRAP) activity, number of TRAP+ multinucleated cells, presence of cells with actin rings and expressing vitronectin and calcitonin receptors, and apoptosis rate. Also, the involvement of several signaling pathways on the cellular response was addressed. It was observed that the tested AHDs had the ability to differentially affect osteoclastogenesis. At low doses, amlodipine and felodipine caused an increase on osteoclastic differentiation, while the other drugs inhibited it. At higher doses, all the molecules caused a decrease on the process. The tested AHDs also showed different effects on the analysed signaling pathways. In conclusion, AHDs appeared to have a direct effect on human osteoclast precursor cells, affecting their differentiation. Interestingly, some of them increased while others inhibited the process. Unraveling the mechanisms beneath these observations might help to explain the adverse effects on bone tissue described for this drug class.
Resumo:
Bone is constantly being molded and shaped by the action of osteoclasts and osteoblasts. A proper equilibrium between both cell types metabolic activities is required to ensure an adequate skeletal tissue structure, and it involves resorption of old bone and formation of new bone tissue. It is reported that treatment with antiepileptic drugs (AEDs) can elicit alterations in skeletal structure, in particular in bone mineral density. Nevertheless, the knowledge regarding the effects of AEDs on bone cells are still scarce, particularly on osteoclastic behaviour. In this context, the aim of this study was to investigate the effects of five different AEDs on human osteoclastic cells. Osteoclastic cell cultures were established from precursor cells isolated from human peripheral blood, and were maintained in the absence (control) or in the presence of 10-8-10-4 M of different AEDs (valproate, carbamazepine, gabapentin, lamotrigine and topiramate). Cell cultures were characterized throughout a 21-day period for tartrate-resistant acid phosphatase (TRAP) activity, number of TRAP+ multinucleated cells, presence of cells with actin rings and expressing vitronectin and calcitonin receptors, and apoptosis rate. Also, the involvement of several signaling pathways on the cellular response was addressed. All the tested drugs were able to affect osteoclastic cell development, although with different profiles on their osteoclastogenic modulation properties. Globally, the tendency was to inhibit the process. Furthermore, the signaling pathways involved in the process also seemed to be differentially affected by the AEDs, suggesting that the different drugs may affect osteoclastogenesis through different mechanisms. In conclusion, the present study showed that the different AEDs had the ability to negatively modulate the osteoclastogenesis process, shedding new light towards a better understanding of how these drugs can affect bone tissue.
Resumo:
Este estudo pretendeu reproduzir uma tarefa da vida diária (marcha com transporte de peso nos membros superiores) realizada de forma rotineira e até aconselhada no contexto da prevenção e reabilitação de patologia cardiovascular, desta forma, teve como objectivo avaliar o efeito agudo de uma sessão de exercício aeróbio associado a exercício isométrico na rigidez arterial em indivíduos jovens. Foram recrutados 14 indivíduos do sexo masculino com média de idade de 30,3±3,6 anos. Foram realizadas duas sessões de exercício com uma semana de intervalo. Em ambas as sessões de exercício, os sujeitos caminharam num tapete rolante a uma velocidade de 5,0 km/h por um período de dez minutos, sendo que, numa das sessões, determinada aleatoriamente, carregaram o equivalente a 10% do seu peso corporal distribuído igualmente pelos dois membros superiores em dois garrafões de água. Avaliou-se em repouso e imediatamente após o exercício, a pressão arterial periférica, a frequência cardíaca e a rigidez arterial. A análise da rigidez arterial foi efectuada na artéria radial do membro superior direito com um sistema transdutor automático de pressão. Os parâmetros reportados neste estudo são a frequência cardíaca, a pressão arterial sistólica e diastólica, a pressão arterial média, a pressão central (aórtica) sistólica, a pressão de pulso central, a pressão de aumentação e o índice de aumentação a 75 bmp (Aix@75). Em repouso, não se verificaram diferenças significativas entre as duas sessões de exercício nos parâmetros avaliados. O principal resultado do presente estudo indica que a rigidez arterial aumenta de forma aguda com a realização de caminhada (exercício aeróbio) apenas quando esta é acompanhada do transporte nos membros superiores de uma carga externa (exercício isométrico) [Aix@75: -5.5(8.4) para -1.36(8.17)%, p<0.05]. Relativamente ao protocolo exclusivamente aeróbio não se verificaram diferenças significativas na rigidez arterial [Aix@75: -4.2(9.1) para -4.69(7.93)%, p>0.05]. Em conclusão, os resultados do presente estudo indicam que a rigidez arterial, em indivíduos jovens e aparentemente saudáveis, aumenta de forma significativa apenas quando o exercício aeróbio é acompanhado de exercício isométrico de membros superiores com transporte de carga adicional.
Resumo:
Objective Deregulation of FAS/FASL system may lead to immune escape and influence bacillus Calmette-Guérin (BCG) immunotherapy outcome, which is currently the gold standard adjuvant treatment for high-risk non–muscle invasive bladder tumors. Among other events, functional promoter polymorphisms of FAS and FASL genes may alter their transcriptional activity. Therefore, we aim to evaluate the role of FAS and FASL polymorphisms in the context of BCG therapy, envisaging the validation of these biomarkers to predict response. Patients and methods DNA extracted from peripheral blood from 125 patients with bladder cancer treated with BCG therapy was analyzed by Polymerase Chain Reaction—Restriction Fragment Length Polymorphism for FAS-670 A/G and FASL-844 T/C polymorphisms. FASL mRNA expression was analyzed by real-time Polymerase Chain Reaction. Results Carriers of FASL-844 CC genotype present a decreased recurrence-free survival after BCG treatment when compared with FASL-844 T allele carriers (mean 71.5 vs. 97.8 months, P = 0.030) and have an increased risk of BCG treatment failure (Hazard Ratio = 1.922; 95% Confidence Interval: [1.064–3.471]; P = 0.030). Multivariate analysis shows that FASL-844 T/C and therapeutics scheme are independent predictive markers of recurrence after treatment. The evaluation of FASL gene mRNA levels demonstrated that patients carrying FASL-844 CC genotype had higher FASL expression in bladder tumors (P = 0.0027). Higher FASL levels were also associated with an increased risk of recurrence after BCG treatment (Hazard Ratio = 2.833; 95% Confidence Interval: [1.012–7.929]; P = 0.047). FAS-670 A/G polymorphism analysis did not reveal any association with BCG therapy outcome. Conclusions Our results suggest that analysis of FASL-844 T/C, but not FAS-670 A/G polymorphisms, may be used as a predictive marker of response to BCG immunotherapy.
Resumo:
Bone is constantly being molded and shaped by the action of osteoclasts and osteoblasts. A proper equilibrium between both cell types metabolic activities is required to ensure an adequate skeletal tissue structure, and it involves resorption of old bone and formation of new bone tissue. It is reported that treatment with antiepileptic drugs (AEDs) can elicit alterations in skeletal structure, in particular in bone mineral density. Nevertheless, the knowledge regarding the effects of AEDs on bone cells are still scarce. In this context, the aim of this study was to investigate the effects of five different AEDs on human osteoclastic, osteoblastic and co-cultured cells. Osteoclastic cell cultures were established from precursor cells isolated from human peripheral blood and were characterized for tartrate-resistant acid phosphatase (TRAP) activity, number of TRAP+ multinucleated cells, presence of cells with actin rings and expressing vitronectin and calcitonin receptors and apoptosis rate. Also, the involvement of several signaling pathways on the cellular response was addressed. Osteoblastic cell cultures were obtained from femur heads of patients (25-45 years old) undergoing orthopaedic surgery procedures and were then studied for cellular proliferation/viability, ALP activity, histochemical staining of ALP and apoptosis rate. Also the expression of osteoblast-related genes and the involvement of some osteoblastogenesis-related signalling pathways on cellular response were addressed. For co-cultured cells, osteoblastic cells were firstly seeded and cultured. After that, PBMC were added to the osteoblastic cells and co-cultures were evaluated using the same osteoclast and osteoblast parameters mentioned above for the corresponding isolated cell. Cell-cultures were maintained in the absence (control) or in the presence of different AEDs (carbamazepine, gabapentin, lamotrigine, topiramate and valproic acid). All the tested drugs were able to affect osteoclastic and osteoblastic cells development, although with different profiles on their osteoclastogenic and osteoblastogenic modulation properties. Globally, the tendency was to inhibit the process. Furthermore, the signaling pathways involved in the process also seemed to be differently affected by the AEDs, suggesting that the different drugs may affect osteoclastogenesis and/or osteoblastogenesis through different mechanisms. In conclusion, the present study showed that the different AEDs had the ability to directly and indirectly modulate bone cells differentiation, shedding new light towards a better understanding of how these drugs can affect bone tissue.
Resumo:
O Cancro da mama é uma doença cuja incidência tem vindo a aumentar de ano para ano e além disso é responsável por um grande número de mortes em todo mundo. De modo a combater esta doença têm sido propostos e utilizados biomarcadores tumorais que permitem o diagnóstico precoce, o acompanhamento do tratamento e/ou a orientação do tipo tratamento a adotar. Atualmente, os biomarcadores circulantes no sangue periférico recomendados pela Associação Americana de Oncologia Clinica (ASCO) para monitorizar os pacientes durante o tratamento são o cancer antigen 15-3 (CA 15-3), o cancer antigen 27.29 (CA 27.29) e o cancer embryobic antigen (CEA). Neste trabalho foi desenvolvido um sensor eletroquímico (voltamétrico) para monitorizar o cancro da mama através da análise do biomarcador CA 15-3. Inicialmente realizou-se o estudo da adsorção da proteína na superfície do elétrodo para compreender o comportamento do sensor para diferentes concentrações. De seguida, estudaram-se três polímeros (poliaminofenol, polifenol e polifenilenodiamina) e selecionou-se o poliaminofenol como o polímero a utilizar, pois possuía a melhor percentagem de alteração de sinal. Após a seleção do polímero, este foi depositado na superfície do elétrodo por eletropolimerização, formando um filme polimérico molecularmente impresso (MIP) à volta da proteína (molde). Posteriormente, foram analisados cinco solventes (água, mistura de dodecil sulfato de sódio e ácido acético, ácido oxálico, guanidina e proteinase K) e o ácido oxálico revelou ser mais eficaz na extração da proteína. Por último, procedeu-se à caraterização do sensor e analisou-se a resposta analítica para diferentes concentrações de CA 15-3 revelando diferenças claras entre o NIP (polímero não impresso) e o MIP.