8 resultados para peer to patent
em Instituto Politécnico do Porto, Portugal
Resumo:
The goal of this paper is to discuss the benefits and challenges of yielding an inter-continental network of remote laboratories supported and used by both European and Latin American Institutions of Higher Education. Since remote experimentation, understood as the ability to carry out real-world experiments through a simple Web browser, is already a proven solution for the educational community as a supplement to on-site practical lab work (and in some cases, namely for distance learning courses, a replacement to that work), the purpose is not to discuss its technical, pedagogical, or economical strengths, but rather to raise and try to answer some questions about the underlying benefits and challenges of establishing a peer-to-peer network of remote labs. Ultimately, we regard such a network as a constructive mechanism to help students gain the working and social skills often valued by multinational/global companies, while also providing awareness of local cultural aspects.
Resumo:
While the IEEE 802.15.4/Zigbee protocol stack is being considered as a promising technology for low-cost low-power Wireless Sensor Networks (WSNs), several issues in the standard specifications are still open. One of those ambiguous issues is how to build a synchronized multi-hop cluster-tree network, which is quite suitable for ensuring QoS support in WSNs. In fact, the current IEEE 802.15.4/Zigbee specifications restrict the synchronization in the beacon-enabled mode (by the generation of periodic beacon frames) to star-based networks, while it supports multi-hop networking using the peer-to-peer mesh topology, but with no synchronization. Even though both specifications mention the possible use of cluster-tree topologies, which combine multihop and synchronization features, the description on how to effectively construct such a network topology is missing. This paper tackles this problem, unveils the ambiguities regarding the use of the cluster-tree topology and proposes a synchronization mechanism based on Time Division Beacon Scheduling to construct cluster-tree WSNs. We also propose a methodology for an efficient duty cycle management in each router (cluster-head) of a cluster-tree WSN that ensures the fairest use of bandwidth resources. The feasibility of the proposal is clearly demonstrated through an experimental test bed based on our own implementation of the IEEE 802.15.4/Zigbee protocol.
Resumo:
The recently standardized IEEE 802.15.4/Zigbee protocol stack offers great potentials for ubiquitous and pervasive computing, namely for Wireless Sensor Networks (WSNs). However, there are still some open and ambiguous issues that turn its practical use a challenging task. One of those issues is how to build a synchronized multi-hop cluster-tree network, which is quite suitable for QoS support in WSNs. In fact, the current IEEE 802.15.4/Zigbee specifications restrict the synchronization in the beacon-enabled mode (by the generation of periodic beacon frames) to star-based networks, while it supports multi-hop networking using the peer-to-peer mesh topology, but with no synchronization. Even though both specifications mention the possible use of cluster-tree topologies, which combine multi-hop and synchronization features, the description on how to effectively construct such a network topology is missing. This paper tackles this problem, unveils the ambiguities regarding the use of the cluster-tree topology and proposes two collision-free beacon frame scheduling schemes. We strongly believe that the results provided in this paper trigger a significant step towards the practical and efficient use of IEEE 802.15.4/Zigbee cluster-tree networks.
Resumo:
The recently standardized IEEE 802.15.4/Zigbee protocol stack offers great potentials for ubiquitous and pervasive computing, namely for Wireless Sensor Networks (WSNs). However, there are still some open and ambiguous issues that turn its practical use a challenging task. One of those issues is how to build a synchronized multi-hop cluster-tree network, which is quite suitable for QoS support in WSNs. In fact, the current IEEE 802.15.4/Zigbee specifications restrict the synchronization in the beacon-enabled mode (by the generation of periodic beacon frames) to star-based networks, while it supports multi-hop networking using the peer-to-peer mesh topology, but with no synchronization. Even though both specifications mention the possible use of cluster-tree topologies, which combine multi-hop and synchronization features, the description on how to effectively construct such a network topology is missing. This report tackles this problem, unveils the ambiguities regarding the use of the cluster-tree topology and proposes two collisionfree beacon frame scheduling schemes.
Resumo:
A Internet, conforme a conhecemos, foi projetada com base na pilha de protocolos TCP/IP, que foi desenvolvida nos anos 60 e 70 utilizando um paradigma centrado nos endereços individuais de cada máquina (denominado host-centric). Este paradigma foi extremamente bem-sucedido em interligar máquinas através de encaminhamento baseado no endereço IP. Estudos recentes demonstram que, parte significativa do tráfego atual da Internet centra-se na transferência de conteúdos, em vez das tradicionais aplicações de rede, conforme foi originalmente concebido. Surgiram então novos modelos de comunicação, entre eles, protocolos de rede ponto-a-ponto, onde cada máquina da rede pode efetuar distribuição de conteúdo (denominadas de redes peer-to-peer), para melhorar a distribuição e a troca de conteúdos na Internet. Por conseguinte, nos últimos anos o paradigma host-centric começou a ser posto em causa e apareceu uma nova abordagem de Redes Centradas na Informação (ICN - information-centric networking). Tendo em conta que a Internet, hoje em dia, basicamente é uma rede de transferência de conteúdos e informações, porque não centrar a sua evolução neste sentido, ao invés de comunicações host-to-host? O paradigma de Rede Centrada no Conteúdo (CCN - Content Centric Networking) simplifica a solução de determinados problemas de segurança relacionados com a arquitetura TCP/IP e é uma das principais propostas da nova abordagem de Redes Centradas na Informação. Um dos principais problemas do modelo TCP/IP é a proteção do conteúdo. Atualmente, para garantirmos a autenticidade e a integridade dos dados partilhados na rede, é necessário garantir a segurança do repositório e do caminho que os dados devem percorrer até ao seu destino final. No entanto, a contínua ineficácia perante os ataques de negação de serviço praticados na Internet, sugere a necessidade de que seja a própria infraestrutura da rede a fornecer mecanismos para os mitigar. Um dos principais pilares do paradigma de comunicação da CCN é focalizar-se no próprio conteúdo e não na sua localização física. Desde o seu aparecimento em 2009 e como consequência da evolução e adaptação a sua designação mudou atualmente para Redes de Conteúdos com Nome (NNC – Named Network Content). Nesta dissertação, efetuaremos um estudo de uma visão geral da arquitetura CCN, apresentando as suas principais características, quais os componentes que a compõem e como os seus mecanismos mitigam os tradicionais problemas de comunicação e de segurança. Serão efetuadas experiências com o CCNx, que é um protótipo composto por um conjunto de funcionalidades e ferramentas, que possibilitam a implementação deste paradigma. O objetivo é analisar criticamente algumas das propostas existentes, determinar oportunidades, desafios e perspectivas para investigação futura.
Resumo:
Learning is not a spectator’s sport. Students do not learn much by just sitting in class listening their teachers, memorizing pre-packaged assignments and spitting out answers. The teaching-learning process has been a constant target of studies, particularly in Higher Education, in consequence of the annual increase of new students. The concern with maintaining a desired quality level in the training of these students, conjugated with the will to widen the access to all of those who finish Secondary School Education, has triggered a greater intervention from the education specialists, in partnership with the teachers of all Higher Education areas, in the analysis of this problem. Considering the particular case of Engineering, it has been witnessed a rising concern with the active learning strategies and forms of assessment. Research has demonstrated that students learn more if they are actively engaged with the material they are studying. In this presentation we describe, present and discuss the techniques and the results of Peer Instruction method in an introductory Calculus courses of an Engineering Bach
Resumo:
This paper presents work in progress, to develop an efficient and economic way to directly produce Technetium 99metastable (99mTc) using low-energy cyclotrons. Its importance is well established and relates with the increased global trouble in delivering 99mTc to Nuclear Medicine Departments relying on this radioisotope. Since the present delivery strategy has clearly demonstrated its intrinsic limits, our group decided to follow a distinct approach that uses the broad distribution of the low energy cyclotrons and the accessibility of Molybdenum 100 (100Mo) as the Target material. This is indeed an important issue to consider, since the system here presented, named CYCLOTECH, it is not based on the use of Highly Enriched (or even Low Enriched) Uranium 235 (235U), so entirely complying with the actual international trends and directives concerning the use of this potential highly critical material. The production technique is based on the nuclear reaction 100Mo (p,2n) 99mTc whose production yields have already been documented. Until this moment two Patent requests have already been submitted (the first at the INPI, in Portugal, and the second at the USPTO, in the USA); others are being prepared for submission on a near future. The object of the CYCLOTECH system is to present 99mTc to Nuclear Medicine radiopharmacists in a routine, reliable and efficient manner that, remaining always flexible, entirely blends with established protocols. To facilitate workflow and Radiation Protection measures, it has been developed a Target Station that can be installed on most of the existing PET cyclotrons and that will tolerate up to 400 μA of beam by allowing the beam to strike the Target material at an adequately oblique angle. The Target Station permits the remote and automatic loading and discharge of the Targets from a carriage of 10 Target bodies. On other hand, several methods of Target material deposition and Target substrates are presented. The object was to create a cost effective means of depositing and intermediate the target material thickness (25 - 100μm) with a minimum of loss on a substrate that is able to easily transport the heat associated with high beam currents. Finally, the separation techniques presented are a combination of both physical and column chemistry. The object was to extract and deliver 99mTc in the identical form now in use in radiopharmacies worldwide. In addition, the Target material is recovered and can be recycled.
Resumo:
Massive Open Online Courses (MOOC) are gaining prominence in transversal teaching-learning strategies. However, there are many issues still debated, namely assessment, recognized largely as a cornerstone in Education. The large number of students involved requires a redefinition of strategies that often use approaches based on tasks or challenging projects. In these conditions and due to this approach, assessment is made through peer-reviewed assignments and quizzes online. The peer-reviewed assignments are often based upon sample answers or topics, which guide the student in the task of evaluating peers. This chapter analyzes the grading and evaluation in MOOCs, especially in science and engineering courses, within the context of education and grading methodologies and discusses possible perspectives to pursue grading quality in massive e-learning courses.