5 resultados para pediatric dry eye

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The quantification of th e differential renal function in adults can be difficult due to many factors - on e of the se is the variances in kidney depth and the attenuation related with all the tissue s between the kidney and the camera. Some authors refer that t he lower attenuation i n p ediatric patients makes unnecessary the use of attenuation correction algorithms. This study will com pare the values of differential renal function obtained with and with out attenuation correction techniques . Material and Methods: Images from a group consisting of 15 individuals (aged 3 years +/ - 2) were used and two attenuation correction method s were applied – Tonnesen correction factors and the geometric mean method . The mean time of acquisition (time post 99m Tc - DMSA administration) was 3.5 hours +/ - 0.8h. Results: T he absence of any method of attenuation correction apparently seems to lead to consistent values that seem to correlate well with the ones obtained with the incorporation of methods of attenuation correction . The differences found between the values obtained with and without attenuation correction were not significant. Conclusion: T he decision of not doing any kind of attenuation correction method can apparently be justified by the minor differences verified on the relative kidney uptake values. Nevertheless, if it is recognized that there is a need for a really accurate value of the relative kidney uptake, then an attenuation correction method should be used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Although relative uptake values aren’t the most important objective of a 99mTc-DMSA scan, they are important quantitative information. In most of the dynamic renal scintigraphies attenuation correction is essential if one wants to obtain a reliable result of the quantification process. Although in DMSA scans the absent of significant background and the lesser attenuation in pediatric patients, makes that this attenuation correction techniques are actually not applied. The geometric mean is the most common method, but that includes the acquisition of an anterior (extra) projection, which it is not acquired by a large number of NM departments. This method and the attenuation factors proposed by Tonnesen will be correlated with the absence of attenuation correction procedures. Material and Methods: Images from 20 individuals (aged 3 years +/- 2) were used and the two attenuation correction methods applied. The mean time of acquisition (time post DMSA administration) was 3.5 hours +/- 0.8h. Results: The absence of attenuation correction showed a good correlation with both attenuation methods (r=0.73 +/- 0.11) and the mean difference verified on the uptake values between the different methods were 4 +/- 3. The correlation was higher when the age was lower. The attenuation correction methods correlation was higher between them two than with the “no attenuation correction” method (r=0.82 +/- 0.8), and the mean differences of the uptake values were 2 +/- 2. Conclusion: The decision of not doing any kind of attenuation correction method can be justified by the minor differences verified on the relative kidney uptake values. Nevertheless, if it is recognized that there is a need for an accurate value of the relative kidney uptake, then an attenuation correction method should be used. Attenuation correction factors proposed by Tonnesen can be easily implemented and so become a practical and easy to implement alternative, namely when the anterior projection - needed for the geometric mean methodology – is not acquired.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diane Arbus‘ photographs are mainly about difference. Most of the time she is trying ‗[…] to suppress, or at least reduce, moral and sensory queasiness‘ (Sontag 1977: 40) in order to represent a world where the subject of the photograph is not merely the ‗other‘ but also the I. Her technique does not coax her subjects into natural poses. Instead she encourages them to be strange and awkward. By posing for her, the revelation of the self is identified with what is odd. This paper aims at understanding the geography of difference that, at the same time, is also of resistance, since Diane Arbus reveals what was forcefully hidden by bringing it into light in such a way that it is impossible to ignore. Her photographs display a poetic beauty that is not only of the ‗I‘ but also of the ‗eye‘. The world that is depicted is one in which we are all the same. She ―atomizes‖ reality by separating each element and ‗Instead of showing identity between things which are different […] everybody is shown to look the same.‘ (Sontag 1977: 47). Furthermore, this paper analyses some of Arbus‘ photographs so as to explain this point of view, by trying to argue that between rejecting and reacting against what is standardized she does not forget the geography of the body which is also a geography of the self. While creating a new imagetic topos, where what is trivial becomes divine, she also presents the frailty of others as our own.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Engenharia Computação e Instrumentação Médica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Astringency is an organoleptic property of beverages and food products resulting mainly from the interaction of salivary proteins with dietary polyphenols. It is of great importance to consumers, but the only effective way of measuring it involves trained sensorial panellists, providing subjective and expensive responses. Concurrent chemical evaluations try to screen food astringency, by means of polyphenol and protein precipitation procedures, but these are far from the real human astringency sensation where not all polyphenol–protein interactions lead to the occurrence of precipitate. Here, a novel chemical approach that tries to mimic protein–polyphenol interactions in the mouth is presented to evaluate astringency. A protein, acting as a salivary protein, is attached to a solid support to which the polyphenol binds (just as happens when drinking wine), with subsequent colour alteration that is fully independent from the occurrence of precipitate. Employing this simple concept, Bovine Serum Albumin (BSA) was selected as the model salivary protein and used to cover the surface of silica beads. Tannic Acid (TA), employed as the model polyphenol, was allowed to interact with the BSA on the silica support and its adsorption to the protein was detected by reaction with Fe(III) and subsequent colour development. Quantitative data of TA in the samples were extracted by colorimetric or reflectance studies over the solid materials. The analysis was done by taking a regular picture with a digital camera, opening the image file in common software and extracting the colour coordinates from HSL (Hue, Saturation, Lightness) and RGB (Red, Green, Blue) colour model systems; linear ranges were observed from 10.6 to 106.0 μmol L−1. The latter was based on the Kubelka–Munk response, showing a linear gain with concentrations from 0.3 to 10.5 μmol L−1. In either of these two approaches, semi-quantitative estimation of TA was enabled by direct eye comparison. The correlation between the levels of adsorbed TA and the astringency of beverages was tested by using the assay to check the astringency of wines and comparing these to the response of sensorial panellists. Results of the two methods correlated well. The proposed sensor has significant potential as a robust tool for the quantitative/semi-quantitative evaluation of astringency in wine.