11 resultados para pattern transfer
em Instituto Politécnico do Porto, Portugal
Resumo:
With accelerated market volatility, faster response times and increased globalization, business environments are going through a major transformation and firms have intensified their search for strategies which can give them competitive advantage. This requires that companies continuously innovate, to think of new ideas that can be transformed or implemented as products, processes or services, generating value for the firm. Innovative solutions and processes are usually developed by a group of people, working together. A grouping of people that share and create new knowledge can be considered as a Community of Practice (CoP). CoP’s are places which provide a sound basis for organizational learning and encourage knowledge creation and acquisition. Virtual Communities of Practice (VCoP's) can perform a central role in promoting communication and collaboration between members who are dispersed in both time and space. Nevertheless, it is known that not all CoP's and VCoP's share the same levels of performance or produce the same results. This means that there are factors that enable or constrain the process of knowledge creation. With this in mind, we developed a case study in order to identify both the motivations and the constraints that members of an organization experience when taking part in the knowledge creating processes of VCoP's. Results show that organizational culture and professional and personal development play an important role in these processes. No interviewee referred to direct financial rewards as a motivation factor for participation in VCoPs. Most identified the difficulty in aligning objectives established by the management with justification for the time spent in the VCoP. The interviewees also said that technology is not a constraint.
Resumo:
Paper accepted for the OKLC 2009 - International Conference on Organizational Learning, Knowledge and Capabilities (26-28th, April 2009, Amsterdam, the Netherlands).
Resumo:
The knowledge-based society we live in has stressed the importance of human capital and brought talent to the top of most wanted skills, especially to companies who want to succeed in turbulent environments worldwide. In fact, streams, sequences of decisions and resource commitments characterize the day-to-day of multinational companies (MNCs). Such decision-making activities encompass major strategic moves like internationalization and new market entries or diversification and acquisitions. In most companies, these strategic decisions are extensively discussed and debated and are generally framed, formulated, and articulated in specialized language often developed by the best minds in the company. Yet the language used in such deliberations, in detailing and enacting the implementation strategy is usually taken for granted and receives little if any explicit attention (Brannen & Doz, 2012) an can still be a “forgotten factor” (Marschan et al. 1997). Literature on language management and international business refers to lack of awareness of business managers of the impact that language can have not only in communication effectiveness but especially in knowledge transfer and knowledge management in business environments. In the context of MNCs, management is, for many different reasons, more complex and demanding than that of a national company, mainly because of diversity factors inherent to internationalization, namely geographical and cultural spaces, i.e, varied mindsets. Moreover, the way of functioning, and managing language, of the MNC depends on its vision, its values and its internationalization model, i.e on in the way the MNE adapts to and controls the new markets, which can vary essentially from a more ethnocentric to a more pluricentric focus. Regardless of the internationalization model followed by the MNC, communication between different business units is essential to achieve unity in diversity and business sustainability. For the business flow and prosperity, inter-subsidiary, intra-company and company-client (customers, suppliers, governments, municipalities, etc..) communication must work in various directions and levels of the organization. If not well managed, this diversity can be a barrier to global coordination and create turbulent environments, even if a good technological support is available (Feely et al., 2002: 4). According to Marchan-Piekkari (1999) the tongue can be both (i) a barrier, (ii) a facilitator and (iii) a source of power. Moreover, the lack of preparation for the barriers of linguistic diversity can lead to various costs, including negotiations’ failure and failure on internationalization.. On the other hand, communication and language fluency is not just a message transfer procedure, but above all a knowledge transfer process, which requires extra-linguistic skills (persuasion, assertiveness …) in order to promote credibility of both parties. For this reason, MNCs need a common code to communicate and trade information inside and outside the company, which will require one or more strategies, in order to overcome possible barriers and organization distortions.
Resumo:
Background and aim: Cardiorespiratory fitness (CRF) and diet have been involved as significant factors towards the prevention of cardio-metabolic diseases. This study aimed to assess the impact of the combined associations of CRF and adherence to the Southern European Atlantic Diet (SEADiet) on the clustering of metabolic risk factors in adolescents. Methods and Results: A cross-sectional school-based study was conducted on 468 adolescents aged 15-18, from the Azorean Islands, Portugal. We measured fasting glucose, insulin, total cholesterol (TC), HDL-cholesterol, triglycerides, systolic blood pressure, waits circumference and height. HOMA, TC/HDL-C ratio and waist-to-height ratio were calculated. For each of these variables, a Z-score was computed by age and sex. A metabolic risk score (MRS) was constructed by summing the Z scores of all individual risk factors. High risk was considered when the individual had 1SD of this score. CRF was measured with the 20 m-Shuttle-Run- Test. Adherence to SEADiet was assessed with a semi-quantitative food frequency questionnaire. Logistic regression showed that, after adjusting for potential confounders, unfit adolescents with low adherence to SEADiet had the highest odds of having MRS (OR Z 9.4; 95%CI:2.6e33.3) followed by the unfit ones with high adherence to the SEADiet (OR Z 6.6; 95% CI: 1.9e22.5) when compared to those who were fit and had higher adherence to SEADiet.
Resumo:
This study aimed to carry out experimental work to obtain, for Newtonian and non-Newtonian fluids, heat transfer coefficients, at constant wall temperature as boundary condition, in fully developed laminar flow inside a helical coil. The Newtonian fluids studied were aqueous solutions of glycerol, 25%, 36%, 43%, 59% and 78% (w/w) and the non-Newtonian fluids aqueous solutions of carboxymethylcellulose (CMC), a polymer, with concentrations 0.1%, 0.2%, 0.3%, 0.4% and 0.6% (w/w) and aqueous solutions of xanthan gum (XG), another polymer, with concentrations 0.1% and 0.2% (w/w). According to the rheological study performed, the polymer solutions had shear thinning behavior and different values of elasticity. The helical coil used has internal diameter, curvature ratio, length and pitch, respectively: 0.004575 m, 0.0263, 5.0 m and 11.34 mm. The Nusselt numbers for the CMC solutions are, on average, slightly higher than those for Newtonian fluids, for identical Prandtl and generalized Dean numbers. As outcome, the viscous component of the shear thinning polymer tends to potentiate the mixing effect of the Dean cells. The Nusselt numbers of the XG solutions are significant lower than those of the Newtonian solutions, for identical Prandtl and generalized Dean numbers. Therefore, the elastic component of the polymer tends to diminish the mixing effect of the Dean cells. A global correlation, for Nusselt number as a function of Péclet, generalized Dean and Weissenberg numbers for all Newtonian and non-Newtonian solutions studied, is presented.
Resumo:
Wireless Sensor Networks (WSNs) are increasingly used in various application domains like home-automation, agriculture, industries and infrastructure monitoring. As applications tend to leverage larger geographical deployments of sensor networks, the availability of an intuitive and user friendly programming abstraction becomes a crucial factor in enabling faster and more efficient development, and reprogramming of applications. We propose a programming pattern named sMapReduce, inspired by the Google MapReduce framework, for mapping application behaviors on to a sensor network and enabling complex data aggregation. The proposed pattern requires a user to create a network-level application in two functions: sMap and Reduce, in order to abstract away from the low-level details without sacrificing the control to develop complex logic. Such a two-fold division of programming logic is a natural-fit to typical sensor networking operation which makes sensing and topological modalities accessible to the user.
Resumo:
Locomotion has been a major research issue in the last few years. Many models for the locomotion rhythms of quadrupeds, hexapods, bipeds and other animals have been proposed. This study has also been extended to the control of rhythmic movements of adaptive legged robots. In this paper, we consider a fractional version of a central pattern generator (CPG) model for locomotion in bipeds. A fractional derivative D α f(x), with α non-integer, is a generalization of the concept of an integer derivative, where α=1. The integer CPG model has been proposed by Golubitsky, Stewart, Buono and Collins, and studied later by Pinto and Golubitsky. It is a network of four coupled identical oscillators which has dihedral symmetry. We study parameter regions where periodic solutions, identified with legs’ rhythms in bipeds, occur, for 0<α≤1. We find that the amplitude and the period of the periodic solutions, identified with biped rhythms, increase as α varies from near 0 to values close to unity.
Resumo:
The aim of this study is to optimize the heat flow through the pultrusion die assembly system on the manufacturing process of a specific glass-fiber reinforced polymer (GFRP) pultrusion profile. The control of heat flow and its distribution through whole die assembly system is of vital importance in optimizing the actual GFRP pultrusion process. Through mathematical modeling of heating-die process, by means of Finite Element Analysis (FEA) program, an optimum heater selection, die position and temperature control was achieved. The thermal environment within the die was critically modeled relative not only to the applied heat sources, but also to the conductive and convective losses, as well as the thermal contribution arising from the exothermic reaction of resin matrix as it cures or polymerizes from the liquid to solid condition. Numerical simulation was validated with basis on thermographic measurements carried out on key points along the die during pultrusion process.
Resumo:
This paper analyses forest fires in the perspective of dynamical systems. Forest fires exhibit complex correlations in size, space and time, revealing features often present in complex systems, such as the absence of a characteristic length-scale, or the emergence of long range correlations and persistent memory. This study addresses a public domain forest fires catalogue, containing information of events for Portugal, during the period from 1980 up to 2012. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses with amplitude proportional to the burnt area. First, we consider mutual information to correlate annual patterns. We use visualization trees, generated by hierarchical clustering algorithms, in order to compare and to extract relationships among the data. Second, we adopt the Multidimensional Scaling (MDS) visualization tool. MDS generates maps where each object corresponds to a point. Objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to identify forest fire patterns.
Resumo:
This paper analyses forest fires in the perspective of dynamical systems. Forest fires exhibit complex correlations in size, space and time, revealing features often present in complex systems, such as the absence of a characteristic length-scale, or the emergence of long range correlations and persistent memory. This study addresses a public domain forest fires catalogue, containing information of events for Portugal, during the period from 1980 up to 2012. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses with amplitude proportional to the burnt area. First, we consider mutual information to correlate annual patterns. We use visualization trees, generated by hierarchical clustering algorithms, in order to compare and to extract relationships among the data. Second, we adopt the Multidimensional Scaling (MDS) visualization tool. MDS generates maps where each object corresponds to a point. Objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to identify forest fire patterns.
Resumo:
High-content analysis has revolutionized cancer drug discovery by identifying substances that alter the phenotype of a cell, which prevents tumor growth and metastasis. The high-resolution biofluorescence images from assays allow precise quantitative measures enabling the distinction of small molecules of a host cell from a tumor. In this work, we are particularly interested in the application of deep neural networks (DNNs), a cutting-edge machine learning method, to the classification of compounds in chemical mechanisms of action (MOAs). Compound classification has been performed using image-based profiling methods sometimes combined with feature reduction methods such as principal component analysis or factor analysis. In this article, we map the input features of each cell to a particular MOA class without using any treatment-level profiles or feature reduction methods. To the best of our knowledge, this is the first application of DNN in this domain, leveraging single-cell information. Furthermore, we use deep transfer learning (DTL) to alleviate the intensive and computational demanding effort of searching the huge parameter's space of a DNN. Results show that using this approach, we obtain a 30% speedup and a 2% accuracy improvement.