75 resultados para pacs: neural computing technologies
em Instituto Politécnico do Porto, Portugal
Resumo:
Power Systems (PS), have been affected by substantial penetration of Distributed Generation (DG) and the operation in competitive environments. The future PS will have to deal with large-scale integration of DG and other distributed energy resources (DER), such as storage means, and provide to market agents the means to ensure a flexible and secure operation. Virtual power players (VPP) can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. This paper proposes an artificial neural network (ANN) based methodology to support VPP resource schedule. The trained network is able to achieve good schedule results requiring modest computational means. A real data test case is presented.
Resumo:
The constant evolution of the Internet and its increasing use and subsequent entailing to private and public activities, resulting in a strong impact on their survival, originates an emerging technology. Through cloud computing, it is possible to abstract users from the lower layers to the business, focusing only on what is most important to manage and with the advantage of being able to grow (or degrades) resources as needed. The paradigm of cloud arises from the necessity of optimization of IT resources evolving in an emergent and rapidly expanding and technology. In this regard, after a study of the most common cloud platforms and the tactic of the current implementation of the technologies applied at the Institute of Biomedical Sciences of Abel Salazar and Faculty of Pharmacy of Oporto University a proposed evolution is suggested in order adorn certain requirements in the context of cloud computing.
Resumo:
When exploring a virtual environment, realism depends mainly on two factors: realistic images and real-time feedback (motions, behaviour etc.). In this context, photo realism and physical validity of computer generated images required by emerging applications, such as advanced e-commerce, still impose major challenges in the area of rendering research whereas the complexity of lighting phenomena further requires powerful and predictable computing if time constraints must be attained. In this technical report we address the state-of-the-art on rendering, trying to put the focus on approaches, techniques and technologies that might enable real-time interactive web-based clientserver rendering systems. The focus is on the end-systems and not the networking technologies used to interconnect client(s) and server(s).
Resumo:
O desenvolvimento de aplicações para dispositivos móveis já não é uma área recente, contudo continua a crescer a um ritmo veloz. É notório o avanço tecnológico dos últimos anos e a crescente popularidade destes dispositivos. Este avanço deve-se não só à grande evolução no que diz respeito às características destes dispositivos, mas também à possibilidade de criar aplicações inovadoras, práticas e passíveis de solucionar os problemas dos utilizadores em geral. Nesse sentido, as necessidades do quotidiano obrigam à implementação de soluções que satisfaçam os utilizadores, e nos dias de hoje, essa satisfação muitas vezes passa pelos dispositivos móveis, que já tem um papel fundamental na vida das pessoas. Atendendo ao aumento do número de raptos de crianças e à insegurança que se verifica nos dias de hoje, as quais dificultam a tarefa de todos os pais/cuidadores que procuraram manter as suas crianças a salvo, é relevante criar uma nova ferramenta capaz de os auxiliar nesta árdua tarefa. A partir desta realidade, e com vista a cumprir os aspetos acima mencionados, surge assim esta dissertação de mestrado. Esta aborda o estudo e implementação efetuados no sentido de desenvolver um sistema de monitorização de crianças. Assim, o objetivo deste projeto passa por desenvolver uma aplicação nativa para Android e um back-end, utilizando um servidor de base de dados NoSQL para o armazenamento da informação, aplicando os conceitos estudados e as tecnologias existentes. A solução tem como principais premissas: ser o mais user-friendly possível, a otimização, a escalabilidade para outras situações (outros tipos de monitorizações) e a aplicação das mais recentes tecnologias. Assim sendo, um dos estudos mais aprofundados nesta dissertação de mestrado está relacionado com as bases de dados NoSQL, dada a sua importância no projeto.
Resumo:
This paper presents the TEC4SEA research infrastructure created in Portugal to support research, development, and validation of marine technologies. It is a multidisciplinary open platform, capable of supporting research, development, and test of marine robotics, telecommunications, and sensing technologies for monitoring and operating in the ocean environment. Due to the installed research facilities and its privileged geographic location, it allows fast access to deep sea, and can support multidisciplinary research, enabling full validation and evaluation of technological solutions designed for the ocean environment. It is a vertically integrated infrastructure, in the sense that it possesses a set of skills and resources which range from pure conceptual research to field deployment missions, with strong industrial and logistic capacities in the middle tier of prototype production. TEC4SEA is open to the entire scientific and enterprise community, with a free access policy for researchers affiliated with the research units that ensure its maintenance and sustainability. The paper describes the infrastructure in detail, and discusses associated research programs, providing a strategic vision for deep sea research initiatives, within the context of both the Portuguese National Ocean Strategy and European Strategy frameworks.
Resumo:
7th Mediterranean Conference on Information Systems, MCIS 2012, Guimaraes, Portugal, September 8-10, 2012, Proceedings Series: Lecture Notes in Business Information Processing, Vol. 129
Resumo:
The large increase of renewable energy sources and Distributed Generation (DG) of electricity gives place to the Virtual Power Producer (VPP) concept. VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets. One of the most important tasks of a VPP is the conjugation of technologies to obtain a consistent set of associated producers and allow them to operate in the electric market. This paper presents some characteristics regarding already existent technologies and relevant aspects for producers and for VPP.
Resumo:
This paper presents an artificial neural network applied to the forecasting of electricity market prices, with the special feature of being dynamic. The dynamism is verified at two different levels. The first level is characterized as a re-training of the network in every iteration, so that the artificial neural network can able to consider the most recent data at all times, and constantly adapt itself to the most recent happenings. The second level considers the adaptation of the neural network’s execution time depending on the circumstances of its use. The execution time adaptation is performed through the automatic adjustment of the amount of data considered for training the network. This is an advantageous and indispensable feature for this neural network’s integration in ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to the market negotiating players of MASCEM (Multi-Agent Simulator of Competitive Electricity Markets).
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simu-lator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM pro-vides several dynamic strategies for agents’ behaviour. This paper presents a method that aims to provide market players strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses an auxiliary forecasting tool, e.g. an Artificial Neural Net-work, to predict the electricity market prices, and analyses its forecasting error patterns. Through the recognition of such patterns occurrence, the method predicts the expected error for the next forecast, and uses it to adapt the actual forecast. The goal is to approximate the forecast to the real value, reducing the forecasting error.
Resumo:
Urban Computing (UrC) provides users with the situation-proper information by considering context of users, devices, and social and physical environment in urban life. With social network services, UrC makes it possible for people with common interests to organize a virtual-society through exchange of context information among them. In these cases, people and personal devices are vulnerable to fake and misleading context information which is transferred from unauthorized and unauthenticated servers by attackers. So called smart devices which run automatically on some context events are more vulnerable if they are not prepared for attacks. In this paper, we illustrate some UrC service scenarios, and show important context information, possible threats, protection method, and secure context management for people.
Resumo:
The activity of Control Center operators is important to guarantee the effective performance of Power Systems. Operators’ actions are crucial to deal with incidents, especially severe faults like blackouts. In this paper, we present an Intelligent Tutoring approach for training Portuguese Control Center operators in tasks like incident analysis and diagnosis, and service restoration of Power Systems. Intelligent Tutoring System (ITS) approach is used in the training of the operators, having into account context awareness and the unobtrusive integration in the working environment. Several Artificial Intelligence techniques were criteriously used and combined together to obtain an effective Intelligent Tutoring environment, namely Multiagent Systems, Neural Networks, Constraint-based Modeling, Intelligent Planning, Knowledge Representation, Expert Systems, User Modeling, and Intelligent User Interfaces.
Resumo:
Electrical activity is extremely broad and distinct, requiring by one hand, a deep knowledge on rules, regulations, materials, equipments, technical solutions and technologies and assistance in several areas, as electrical equipment, telecommunications, security and efficiency and rational use of energy, on the other hand, also requires other skills, depending on the specific projects to be implemented, being this knowledge a characteristic that belongs to the professionals with relevant experience, in terms of complexity and specific projects that were made.
Resumo:
Shopping centers present a rich and heterogeneous environment, where IT systems can be implemented in order to support the needs of its actors. However, due to the environment complexity, several feasibility issues emerge when designing both the logical and physical architecture of such systems. Additionally, the system must be able to cope with the individual needs of each actor, and provide services that are easily adopted by them, taking into account several sociological and economical aspects. In this sense, we present an overview of current support systems for shopping center environments. From this overview, a high-level model of the domain (involving actors and services) is described along with challenges and possible features in the context of current Semantic Web, mobile device and sensor technologies.
Resumo:
We describe a novel approach to scheduling resolution by combining Autonomic Computing (AC), Multi-Agent Systems (MAS) and Nature Inspired Optimization Techniques (NIT). Autonomic Computing has emerged as paradigm aiming at embedding applications with a management structure similar to a central nervous system. A natural Autonomic Computing evolution in relation to Current Computing is to provide systems with Self-Managing ability with a minimum human interference. In this paper we envisage the use of Multi-Agent Systems paradigm for supporting dynamic and distributed scheduling in Manufacturing Systems with Autonomic properties, in order to reduce the complexity of managing systems and human interference. Additionally, we consider the resolution of realistic problems. The scheduling of a Cutting and Treatment Stainless Steel Sheet Line will be evaluated. Results show that proposed approach has advantages when compared with other scheduling systems.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores