2 resultados para nonpoint-source pollution control

em Instituto Politécnico do Porto, Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Air pollution represents a serious risk not only to environment and human health, but also to historical heritage. In this study, air pollution of the Oporto Metropolitan Area and its main impacts were characterized. The results showed that levels of CO, PM10 and SO2 have been continuously decreasing in the respective metropolitan area while levels of NOx and NO2 have not changed significantly. Traffic emissions were the main source of the determined polycyclic aromatic hydrocarbons (PAHs; 16 PAHs considered by U.S. EPA as priority pollutants, dibenzo[a,l]pyrene and benzo[j]fluoranthene) in air of the respective metropolitan area. The mean concentration of 18 PAHs in air was 69.9±39.7 ng m−3 with 3–4 rings PAHs accounting for 75% of the total ΣPAHs. The health risk analysis of PAHs in air showed that the estimated values of lifetime lung cancer risks considerably exceeded the health-based guideline level. Analytical results also confirm that historical monuments in urban areas act as passive repositories for air pollutants present in the surrounding atmosphere. FTIR and EDX analyses showed that gypsum was the most important constituent of black crusts of the characterized historical monument Monastery of Serra do Pilar classified as “UNESCO World Cultural Heritage”. In black crusts, 4–6 rings compounds accounted approximately for 85% of ΣPAHs. The diagnostic ratios confirmed that traffic emissions were the major source of PAHs in black crusts; PAH composition profiles were very similar for crusts and PM10 and PM2.5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Real-time monitoring applications may be used in a wireless sensor network (WSN) and may generate packet flows with strict quality of service requirements in terms of delay, jitter, or packet loss. When strict delays are imposed from source to destination, the packets must be delivered at the destination within an end-to-end delay (EED) hard limit in order to be considered useful. Since the WSN nodes are scarce both in processing and energy resources, it is desirable that they only transport useful data, as this contributes to enhance the overall network performance and to improve energy efficiency. In this paper, we propose a novel cross-layer admission control (CLAC) mechanism to enhance the network performance and increase energy efficiency of a WSN, by avoiding the transmission of potentially useless packets. The CLAC mechanism uses an estimation technique to preview packets EED, and decides to forward a packet only if it is expected to meet the EED deadline defined by the application, dropping it otherwise. The results obtained show that CLAC enhances the network performance by increasing the useful packet delivery ratio in high network loads and improves the energy efficiency in every network load.