42 resultados para neural architecture

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Business Intelligence (BI) is one emergent area of the Decision Support Systems (DSS) discipline. Over the last years, the evolution in this area has been considerable. Similarly, in the last years, there has been a huge growth and consolidation of the Data Mining (DM) field. DM is being used with success in BI systems, but a truly DM integration with BI is lacking. Therefore, a lack of an effective usage of DM in BI can be found in some BI systems. An architecture that pretends to conduct to an effective usage of DM in BI is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an artificial neural network applied to the forecasting of electricity market prices, with the special feature of being dynamic. The dynamism is verified at two different levels. The first level is characterized as a re-training of the network in every iteration, so that the artificial neural network can able to consider the most recent data at all times, and constantly adapt itself to the most recent happenings. The second level considers the adaptation of the neural network’s execution time depending on the circumstances of its use. The execution time adaptation is performed through the automatic adjustment of the amount of data considered for training the network. This is an advantageous and indispensable feature for this neural network’s integration in ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to the market negotiating players of MASCEM (Multi-Agent Simulator of Competitive Electricity Markets).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many of the most common human functions such as temporal and non-monotonic reasoning have not yet been fully mapped in developed systems, even though some theoretical breakthroughs have already been accomplished. This is mainly due to the inherent computational complexity of the theoretical approaches. In the particular area of fault diagnosis in power systems however, some systems which tried to solve the problem, have been deployed using methodologies such as production rule based expert systems, neural networks, recognition of chronicles, fuzzy expert systems, etc. SPARSE (from the Portuguese acronym, which means expert system for incident analysis and restoration support) was one of the developed systems and, in the sequence of its development, came the need to cope with incomplete and/or incorrect information as well as the traditional problems for power systems fault diagnosis based on SCADA (supervisory control and data acquisition) information retrieval, namely real-time operation, huge amounts of information, etc. This paper presents an architecture for a decision support system, which can solve the presented problems, using a symbiosis of the event calculus and the default reasoning rule based system paradigms, insuring soft real-time operation with incomplete, incorrect or domain incoherent information handling ability. A prototype implementation of this system is already at work in the control centre of the Portuguese Transmission Network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power system organization has gone through huge changes in the recent years. Significant increase in distributed generation (DG) and operation in the scope of liberalized markets are two relevant driving forces for these changes. More recently, the smart grid (SG) concept gained increased importance, and is being seen as a paradigm able to support power system requirements for the future. This paper proposes a computational architecture to support day-ahead Virtual Power Player (VPP) bid formation in the smart grid context. This architecture includes a forecasting module, a resource optimization and Locational Marginal Price (LMP) computation module, and a bid formation module. Due to the involved problems characteristics, the implementation of this architecture requires the use of Artificial Intelligence (AI) techniques. Artificial Neural Networks (ANN) are used for resource and load forecasting and Evolutionary Particle Swarm Optimization (EPSO) is used for energy resource scheduling. The paper presents a case study that considers a 33 bus distribution network that includes 67 distributed generators, 32 loads and 9 storage units.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes an architecture conceived to integrate Power Sys-tems tools in a Power System Control Centre, based on an Ambient Intelligent (AmI) paradigm. This architecture is an instantiation of the generic architecture proposed in [1] for developing systems that interact with AmI environments. This architecture has been proposed as a consequence of a methodology for the inclu-sion of Artificial Intelligence in AmI environments (ISyRAmI - Intelligent Sys-tems Research for Ambient Intelligence). The architecture presented in the paper will be able to integrate two applications in the control room of a power system transmission network. The first is SPARSE expert system, used to get diagnosis of incidents and to support power restoration. The second application is an Intelligent Tutoring System (ITS) incorporating two training tools. The first tutoring tool is used to train operators to get the diagnosis of incidents. The second one is another tutoring tool used to train operators to perform restoration procedures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power Systems (PS), have been affected by substantial penetration of Distributed Generation (DG) and the operation in competitive environments. The future PS will have to deal with large-scale integration of DG and other distributed energy resources (DER), such as storage means, and provide to market agents the means to ensure a flexible and secure operation. Virtual power players (VPP) can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. This paper proposes an artificial neural network (ANN) based methodology to support VPP resource schedule. The trained network is able to achieve good schedule results requiring modest computational means. A real data test case is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the proposal of an architecture for developing systems that interact with Ambient Intelligence (AmI) environments. This architecture has been proposed as a consequence of a methodology for the inclusion of Artificial Intelligence in AmI environments (ISyRAmI - Intelligent Systems Research for Ambient Intelligence). The ISyRAmI architecture considers several modules. The first is related with the acquisition of data, information and even knowledge. This data/information knowledge deals with our AmI environment and can be acquired in different ways (from raw sensors, from the web, from experts). The second module is related with the storage, conversion, and handling of the data/information knowledge. It is understood that incorrectness, incompleteness, and uncertainty are present in the data/information/knowledge. The third module is related with the intelligent operation on the data/information/knowledge of our AmI environment. Here we include knowledge discovery systems, expert systems, planning, multi-agent systems, simulation, optimization, etc. The last module is related with the actuation in the AmI environment, by means of automation, robots, intelligent agents and users.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ancillary services represent a good business opportunity that must be considered by market players. This paper presents a new methodology for ancillary services market dispatch. The method considers the bids submitted to the market and includes a market clearing mechanism based on deterministic optimization. An Artificial Neural Network is used for day-ahead prediction of Regulation Down, regulation-up, Spin Reserve and Non-Spin Reserve requirements. Two test cases based on California Independent System Operator data concerning dispatch of Regulation Down, Regulation Up, Spin Reserve and Non-Spin Reserve services are included in this paper to illustrate the application of the proposed method: (1) dispatch considering simple bids; (2) dispatch considering complex bids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Robuter is a robotic mobile platform that is located in the “Hands-On” Laboratory of the IPP-Hurray! Research Group, at the School of Engineering of the Polytechnic Institute of Porto. Recently, the Robuter was subject of an upgrading process addressing two essential areas: the Hardware Architecture and the Software Architecture. This upgrade in process was triggered due to technical problems on-board of the robot and also to the fact that the hardware/software architecture has become obsolete. This Technical Report overviews the most important aspects of the new Hardware and Software Architectures of the Robuter. This document also presents a first approach on the first steps towards the use of the Robuter platform, and provides some hints on future work that may be carried out using this mobile platform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Distributed Computer-Controlled Systems (DCCS), both real-time and reliability requirements are of major concern. Architectures for DCCS must be designed considering the integration of processing nodes and the underlying communication infrastructure. Such integration must be provided by appropriate software support services. In this paper, an architecture for DCCS is presented, its structure is outlined, and the services provided by the support software are presented. These are considered in order to guarantee the real-time and reliability requirements placed by current and future systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an architecture (Multi-μ) being implemented to study and develop software based fault tolerant mechanisms for Real-Time Systems, using the Ada language (Ada 95) and Commercial Off-The-Shelf (COTS) components. Several issues regarding fault tolerance are presented and mechanisms to achieve fault tolerance by software active replication in Ada 95 are discussed. The Multi-μ architecture, based on a specifically proposed Fault Tolerance Manager (FTManager), is then described. Finally, some considerations are made about the work being done and essential future developments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In spite of the significant amount of scientific work in Wireless Sensor Networks (WSNs), there is a clear lack of effective, feasible and usable WSN system architectures that address both functional and non-functional requirements in an integrated fashion. This poster abstract outlines the EMMON system architecture for large-scale, dense, real-time embedded monitoring. EMMON relies on a hierarchical network architecture together with integrated middleware and command&control mechanisms. It has been designed to use standard commercially– available technologies, while maintaining as much flexibility as possible to meet specific applications’ requirements. The EMMON WSN architecture has been validated through extensive simulation and experimental evaluation, including through a 300+ node test-bed, the largest WSN test-bed in Europe to date

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) have attracted growing interest in the last decade as an infrastructure to support a diversity of ubiquitous computing and cyber-physical systems. However, most research work has focused on protocols or on specific applications. As a result, there remains a clear lack of effective and usable WSN system architectures that address both functional and non-functional requirements in an integrated fashion. This poster outlines the EMMON system architecture for large-scale, dense, real-time embedded monitoring. It provides a hierarchical communication architecture together with integrated middleware and command and control software. It has been designed to maintain as much as flexibility as possible while meeting specific applications requirements. EMMON has been validated through extensive analytical, simulation and experimental evaluations, including through a 300+ nodes test-bed the largest single-site WSN test-bed in Europe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) have attracted growing interest in the last decade as an infrastructure to support a diversity of ubiquitous computing and cyber-physical systems. However, most research work has focused on protocols or on specific applications. As a result, there remains a clear lack of effective, feasible and usable system architectures that address both functional and non-functional requirements in an integrated fashion. In this paper, we outline the EMMON system architecture for large-scale, dense, real-time embedded monitoring. EMMON provides a hierarchical communication architecture together with integrated middleware and command and control software. It has been designed to use standard commercially-available technologies, while maintaining as much flexibility as possible to meet specific applications requirements. The EMMON architecture has been validated through extensive simulation and experimental evaluation, including a 300+ node test-bed, which is, to the best of our knowledge, the largest single-site WSN test-bed in Europe to date.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wind energy is considered a hope in future as a clean and sustainable energy, as can be seen by the growing number of wind farms installed all over the world. With the huge proliferation of wind farms, as an alternative to the traditional fossil power generation, the economic issues dictate the necessity of monitoring systems to optimize the availability and profits. The relatively high cost of operation and maintenance associated to wind power is a major issue. Wind turbines are most of the time located in remote areas or offshore and these factors increase the referred operation and maintenance costs. Good maintenance strategies are needed to increase the health management of wind turbines. The objective of this paper is to show the application of neural networks to analyze all the wind turbine information to identify possible future failures, based on previous information of the turbine.