7 resultados para multi-anode transverse field gas ionization chamber
em Instituto Politécnico do Porto, Portugal
Resumo:
In the last twenty years genetic algorithms (GAs) were applied in a plethora of fields such as: control, system identification, robotics, planning and scheduling, image processing, and pattern and speech recognition (Bäck et al., 1997). In robotics the problems of trajectory planning, collision avoidance and manipulator structure design considering a single criteria has been solved using several techniques (Alander, 2003). Most engineering applications require the optimization of several criteria simultaneously. Often the problems are complex, include discrete and continuous variables and there is no prior knowledge about the search space. These kind of problems are very more complex, since they consider multiple design criteria simultaneously within the optimization procedure. This is known as a multi-criteria (or multiobjective) optimization, that has been addressed successfully through GAs (Deb, 2001). The overall aim of multi-criteria evolutionary algorithms is to achieve a set of non-dominated optimal solutions known as Pareto front. At the end of the optimization procedure, instead of a single optimal (or near optimal) solution, the decision maker can select a solution from the Pareto front. Some of the key issues in multi-criteria GAs are: i) the number of objectives, ii) to obtain a Pareto front as wide as possible and iii) to achieve a Pareto front uniformly spread. Indeed, multi-objective techniques using GAs have been increasing in relevance as a research area. In 1989, Goldberg suggested the use of a GA to solve multi-objective problems and since then other researchers have been developing new methods, such as the multi-objective genetic algorithm (MOGA) (Fonseca & Fleming, 1995), the non-dominated sorted genetic algorithm (NSGA) (Deb, 2001), and the niched Pareto genetic algorithm (NPGA) (Horn et al., 1994), among several other variants (Coello, 1998). In this work the trajectory planning problem considers: i) robots with 2 and 3 degrees of freedom (dof ), ii) the inclusion of obstacles in the workspace and iii) up to five criteria that are used to qualify the evolving trajectory, namely the: joint traveling distance, joint velocity, end effector / Cartesian distance, end effector / Cartesian velocity and energy involved. These criteria are used to minimize the joint and end effector traveled distance, trajectory ripple and energy required by the manipulator to reach at destination point. Bearing this ideas in mind, the paper addresses the planning of robot trajectories, meaning the development of an algorithm to find a continuous motion that takes the manipulator from a given starting configuration up to a desired end position without colliding with any obstacle in the workspace. The chapter is organized as follows. Section 2 describes the trajectory planning and several approaches proposed in the literature. Section 3 formulates the problem, namely the representation adopted to solve the trajectory planning and the objectives considered in the optimization. Section 4 studies the algorithm convergence. Section 5 studies a 2R manipulator (i.e., a robot with two rotational joints/links) when the optimization trajectory considers two and five objectives. Sections 6 and 7 show the results for the 3R redundant manipulator with five goals and for other complementary experiments are described, respectively. Finally, section 8 draws the main conclusions.
Resumo:
This paper describes the development and the implementation of a multi-agent system for integrated diagnosis of power transformers. The system is divided in layers which contain a number of agents performing different functions. The social ability and cooperation between the agents lead to the final diagnosis and to other relevant conclusions through integrating various monitoring technologies, diagnostic methods and data sources, such as the dissolved gas analysis.
Resumo:
Electricity markets worldwide suffered profound transformations. The privatization of previously nationally owned systems; the deregulation of privately owned systems that were regulated; and the strong interconnection of national systems, are some examples of such transformations [1, 2]. In general, competitive environments, as is the case of electricity markets, require good decision-support tools to assist players in their decisions. Relevant research is being undertaken in this field, namely concerning player modeling and simulation, strategic bidding and decision-support.
Resumo:
The aim of this study was to assess the effects of inoculation of rhizosphere or endophytic bacteria (Psychrobacter sp. SRS8 and Pseudomonas sp. A3R3, respectively) isolated from a serpentine environment on the plant growth and the translocation and accumulation of Ni, Zn, and Fe by Brassica juncea and Ricinus communis on a multi-metal polluted serpentine soil (SS). Field collected SS was diluted to 0, 25, 50, and 75% with pristine soil in order to obtain a range of heavy metal concentrations and used in microcosm experiments. Regardless of inoculation with bacteria, the biomass of both plant species decreased with increase of the proportion of SS. Inoculation of plants with bacteria significantly increased the plant biomass and the heavy metal accumulation compared with non-inoculated control in the presence of different proportion of SS, which was attributed to the production of plant growth promoting and/or metal mobilizing metabolites by bacteria. However, SRS8 showed a maximum increase in the biomass of the test plants grown even in the treatment of 75% SS. In turn, A3R3 showed maximum effects on the accumulation of heavy metals in both plants. Regardless of inoculation of bacteria and proportion of SS, both plant species exhibited low values of bioconcentration factor (<1) for Ni and Fe. The inoculation of both bacterial strains significantly increased the translocation factor (TF) of Ni while decreasing the TF of Zn in both plant species. Besides this contrasting effect, the TFs of all metals were <1, indicating that all studied bacteria–plant combinations are suitable for phytostabilization. This study demonstrates that the bacterial isolates A3R3 and SRS8 improved the growth of B. juncea and R. communis in SS soils and have a great potential to be used as inoculants in phytostabilization scenarios of multi-metal contaminated soils.
Resumo:
Target tracking with bearing-only sensors is a challenging problem when the target moves dynamically in complex scenarios. Besides the partial observability of such sensors, they have limited field of views, occlusions can occur, etc. In those cases, cooperative approaches with multiple tracking robots are interesting, but the different sources of uncertain information need to be considered appropriately in order to achieve better estimates. Even though there exist probabilistic filters that can estimate the position of a target dealing with incertainties, bearing-only measurements bring usually additional problems with initialization and data association. In this paper, we propose a multi-robot triangulation method with a dynamic baseline that can triangulate bearing-only measurements in a probabilistic manner to produce 3D observations. This method is combined with a decentralized stochastic filter and used to tackle those initialization and data association issues. The approach is validated with simulations and field experiments where a team of aerial and ground robots with cameras track a dynamic target.
Resumo:
4th International Conference, SIMPAR 2014, Bergamo, Italy, October 20-23, 2014
Resumo:
Smart Cities are designed to be living systems and turn urban dwellers life more comfortable and interactive by keeping them aware of what surrounds them, while leaving a greener footprint. The Future Cities Project [1] aims to create infrastructures for research in smart cities including a vehicular network, the BusNet, and an environmental sensor platform, the Urban Sense. Vehicles within the BusNet are equipped with On Board Units (OBUs) that offer free Wi-Fi to passengers and devices near the street. The Urban Sense platform is composed by a set of Data Collection Units (DCUs) that include a set of sensors measuring environmental parameters such as air pollution, meteorology and noise. The Urban Sense platform is expanding and receptive to add new sensors to the platform. The parnership with companies like TNL were made and the need to monitor garbage street containers emerged as air pollution prevention. If refuse collection companies know prior to the refuse collection which route is the best to collect the maximum amount of garbage with the shortest path, they can reduce costs and pollution levels are lower, leaving behind a greener footprint. This dissertation work arises in the need to monitor the garbage street containers and integrate these sensors into an Urban Sense DCU. Due to the remote locations of the garbage street containers, a network extension to the vehicular network had to be created. This dissertation work also focus on the Multi-hop network designed to extend the vehicular network coverage area to the remote garbage street containers. In locations where garbage street containers have access to the vehicular network, Roadside Units (RSUs) or Access Points (APs), the Multi-hop network serves has a redundant path to send the data collected from DCUs to the Urban Sense cloud database. To plan this highly dynamic network, the Wi-Fi Planner Tool was developed. This tool allowed taking measurements on the field that led to an optimized location of the Multi-hop network nodes with the use of radio propagation models. This tool also allowed rendering a temperature-map style overlay for Google Earth [2] application. For the DCU for garbage street containers the parner company provided the access to a HUB (device that communicates with the sensor inside the garbage containers). The Future Cities use the Raspberry pi as a platform for the DCUs. To collect the data from the HUB a RS485 to RS232 converter was used at the physical level and the Modbus protocol at the application level. To determine the location and status of the vehicles whinin the vehicular network a TCP Server was developed. This application was developed for the OBUs providing the vehicle Global Positioning System (GPS) location as well as information of when the vehicle is stopped, moving, on idle or even its slope. To implement the Multi-hop network on the field some scripts were developed such as pingLED and “shark”. These scripts helped upon node deployment on the field as well as to perform all the tests on the network. Two setups were implemented on the field, an urban setup was implemented for a Multi-hop network coverage survey and a sub-urban setup was implemented to test the Multi-hop network routing protocols, Optimized Link State Routing Protocol (OLSR) and Babel.