2 resultados para mining algorithm
em Instituto Politécnico do Porto, Portugal
Resumo:
This paper deals with the establishment of a characterization methodology of electric power profiles of medium voltage (MV) consumers. The characterization is supported on the data base knowledge discovery process (KDD). Data Mining techniques are used with the purpose of obtaining typical load profiles of MV customers and specific knowledge of their customers’ consumption habits. In order to form the different customers’ classes and to find a set of representative consumption patterns, a hierarchical clustering algorithm and a clustering ensemble combination approach (WEACS) are used. Taking into account the typical consumption profile of the class to which the customers belong, new tariff options were defined and new energy coefficients prices were proposed. Finally, and with the results obtained, the consequences that these will have in the interaction between customer and electric power suppliers are analyzed.
Resumo:
A methodology based on data mining techniques to support the analysis of zonal prices in real transmission networks is proposed in this paper. The mentioned methodology uses clustering algorithms to group the buses in typical classes that include a set of buses with similar LMP values. Two different clustering algorithms have been used to determine the LMP clusters: the two-step and K-means algorithms. In order to evaluate the quality of the partition as well as the best performance algorithm adequacy measurements indices are used. The paper includes a case study using a Locational Marginal Prices (LMP) data base from the California ISO (CAISO) in order to identify zonal prices.