6 resultados para metals and alloys

em Instituto Politécnico do Porto, Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O desenvolvimento sustentável é um dos grandes desafios dos nossos tempos com inúmeras consequências em várias áreas da nossa sociedade. É uma questão abrangente e essencial para a sobrevivência do modo de vida tal como o conhecemos actualmente. A construção sustentável tem um papel muito importante no desenvolvimento, não só ao nível económico mas também social e cultural. Embora não contemple a energia incorporada, a avaliação do ciclo de vida (ACV), no sector da construção, é um dos métodos mais comuns para avaliar o nível de sustentabilidade. Este trabalho visa os metais como uma das mais promissoras e actuais respostas do sector da construção às crescentes preocupações em relação ao desenvolvimento sustentável. O ferro e derivados são normalmente a base das construções metálicas, residindo no seu potencial de reutilização e reciclagem um dos seus principais factores de sustentabilidade. As estruturas metálicas apresentam características especificas que se coadunam com os requisitos da construção sustentável e que tornam este tipo de construção extremamente versátil e interessante. Neste trabalho, é efectuada uma abordagem sobre a construção metálica ao longo de três partes. A primeira parte é constituída por uma introdução histórica ao ferro e seus derivados enunciando exemplos de construções até aos nossos dias, e pela classificação dos vários tipos de metais e ligas metálicas. Na segunda parte, é abordado o conceito de sustentável e o seu enquadramento no sector da construção, e é feita uma introdução à metodologia de avaliação de ciclo de vida. Na terceira parte, é abordado um exemplo prático de uma estrutura metálica em que são elaboradas e comparadas três soluções. Na origem da diversidade dos elementos comparativos estão o tipo de aço, a origem da energia utilizada no seu fabrico e o tipo de solução técnica adoptada. O objectivo deste trabalho é compreender as repercussões do conceito de sustentabilidade no sector da construção, e desenvolver um método simplificado de avaliação dos impactos ambientais e económicos de soluções metálicas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hospitals are considered as a special and important type of indoor public place where air quality has significant impacts on potential health outcomes. Information on indoor air quality of these environments, concerning exposures to particulate matter (PM) and related toxicity, is limited though. This work aims to evaluate risks associated with inhalation exposure to ten toxic metals and chlorine (As, Ni, Cr, Cd, Pb, Mn, Se, Ba, Al, Si, and Cl) in coarse (PM2.5–10) and fine (PM2.5) particles in a Portuguese hospital in comparison with studies representative of other countries. Samples were collected during 1 month in one urban hospital; elemental PM characterization was determined by proton-induced X-ray emission. Noncarcinogenic and carcinogenic risks were assessed according to the methodology provided by the United States Environmental Protection Agency (USEPA; Region III Risk-Based Concentration Table) for three different age categories of hospital personnel (adults, >20, and <65 years) and patients (considering nine different age groups, i.e., children of 1–3 years to seniors of >65 years). The estimated noncarcinogenic risks due to occupational inhalation exposure to PM2.5-bound metals ranged from 5.88×10−6 for Se (adults, 55–64 years) to 9.35×10−1 for As (adults, 20–24 years) with total noncarcinogenic risks (sum of all metals) above the safe level for all three age categories. As and Cl (the latter due to its high abundances) were the most important contributors (approximately 90 %) to noncarcinogenic risks. For PM2.5–10, noncarcinogenic risks of all metals were acceptable to all age groups. Concerning carcinogenic risks, for Ni and Pb, they were negligible (<1×10−6) in both PM fractions for all age groups of hospital personnel; potential risks were observed for As and Cr with values in PM2.5 exceeding (up to 62 and 5 times, respectively) USEPA guideline across all age groups; for PM2.5–10, increased excess risks of As and Cr were observed particularly for long-term exposures (adults, 55–64 years). Total carcinogenic risks highly (up to 67 times) exceeded the recommended level for all age groups, thus clearly showing that occupational exposure to metals in fine particles pose significant risks. If the extensive working hours of hospital medical staff were considered, the respective noncarcinogenic and carcinogenic risks were increased, the latter for PM2.5 exceeding the USEPA cumulative guideline of 10−4. For adult patients, the estimated noncarcinogenic and carcinogenic risks were approximately three times higher than for personnel, with particular concerns observed for children and adolescents.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of buffers to maintain the pH within a desired range is a very common practice in chemical, biochemical and biological studies. Among them, zwitterionic N-substituted aminosulfonic acids, usually known as Good’s buffers, although widely used, can complex metals and interact with biological systems. The present work reviews, discusses and updates the metal complexation characteristics of thirty one commercially available buffers. In addition, their impact on biological systems is also presented. The influences of these buffers on the results obtained in biological, biochemical and environmental studies, with special focus on their interaction with metal ions, are highlighted and critically reviewed. Using chemical speciation simulations, based on the current knowledge of the metal–buffer stability constants, a proposal of the most adequate buffer to employ for a given metal ion is presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bonded unions are gaining importance in many fields of manufacturing owing to a significant number of advantages to the traditional fastening, riveting, bolting and welding techniques. Between the available bonding configurations, the single-lap joint is the most commonly used and studied by the scientific community due to its simplicity, although it endures significant bending due to the non-collinear load path, which negatively affects its load bearing capabilities. The use of material or geometric changes in single-lap joints is widely documented in the literature to reduce this handicap, acting by reduction of peel and shear peak stresses at the damage initiation sites in structures or alterations of the failure mechanism emerging from local modifications. In this work, the effect of hole drilling at the overlap on the strength of single-lap joints was analyzed experimentally with two main purposes: (1) to check whether or not the anchorage effect of the adhesive within the holes is more preponderant than the stress concentrations near the holes, arising from the sharp edges, and modification of the joints straining behaviour (strength improvement or reduction, respectively) and (2) picturing a real scenario on which the components to be bonded are modified by some external factor (e.g. retrofitting of decaying/old-fashioned fastened unions). Tests were made with two adhesives (a brittle and a ductile one) varying the adherend thickness and the number, layout and diameter of the holes. Experimental testing showed that the joints strength never increases from the un-modified condition, showing a varying degree of weakening, depending on the selected adhesive and hole drilling configuration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adhesive bonding is nowadays a serious candidate to replace methods such as fastening or riveting, because of attractive mechanical properties. As a result, adhesives are being increasingly used in industries such as the automotive, aerospace and construction. Thus, it is highly important to predict the strength of bonded joints to assess the feasibility of joining during the fabrication process of components (e.g. due to complex geometries) or for repairing purposes. This work studies the tensile behaviour of adhesive joints between aluminium adherends considering different values of adherend thickness (h) and the double-cantilever beam (DCB) test. The experimental work consists of the definition of the tensile fracture toughness (GIC) for the different joint configurations. A conventional fracture characterization method was used, together with a J-integral approach, that take into account the plasticity effects occurring in the adhesive layer. An optical measurement method is used for the evaluation of crack tip opening and adherends rotation at the crack tip during the test, supported by a Matlab® sub-routine for the automated extraction of these quantities. As output of this work, a comparative evaluation between bonded systems with different values of adherend thickness is carried out and complete fracture data is provided in tension for the subsequent strength prediction of joints with identical conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Proceedings of the 13th International UFZ-Deltares Conference on Sustainable Use and Management of Soil, Sediment and Water Resources - 9–12 June 2015 • Copenhagen, Denmark