24 resultados para meta heuristics
em Instituto Politécnico do Porto, Portugal
Resumo:
Scheduling resolution requires the intervention of highly skilled human problemsolvers. This is a very hard and challenging domain because current systems are becoming more and more complex, distributed, interconnected and subject to rapidly changing. A natural Autonomic Computing evolution in relation to Current Computing is to provide systems with Self-Managing ability with a minimum human interference. This paper addresses the resolution of complex scheduling problems using cooperative negotiation. A Multi-Agent Autonomic and Meta-heuristics based framework with self-configuring capabilities is proposed.
Resumo:
The scheduling problem is considered in complexity theory as a NP-hard combinatorial optimization problem. Meta-heuristics proved to be very useful in the resolution of this class of problems. However, these techniques require parameter tuning which is a very hard task to perform. A Case-based Reasoning module is proposed in order to solve the parameter tuning problem in a Multi-Agent Scheduling System. A computational study is performed in order to evaluate the proposed CBR module performance.
Resumo:
A novel agent-based approach to Meta-Heuristics self-configuration is proposed in this work. Meta-heuristics are examples of algorithms where parameters need to be set up as efficient as possible in order to unsure its performance. This paper presents a learning module for self-parameterization of Meta-heuristics (MHs) in a Multi-Agent System (MAS) for resolution of scheduling problems. The learning is based on Case-based Reasoning (CBR) and two different integration approaches are proposed. A computational study is made for comparing the two CBR integration perspectives. In the end, some conclusions are reached and future work outlined.
Resumo:
This paper addresses the problem of Biological Inspired Optimization Techniques (BIT) parameterization, considering the importance of this issue in the design of BIT especially when considering real world situations, subject to external perturbations. A learning module with the objective to permit a Multi-Agent Scheduling System to automatically select a Meta-heuristic and its parameterization to use in the optimization process is proposed. For the learning process, Casebased Reasoning was used, allowing the system to learn from experience, in the resolution of similar problems. Analyzing the obtained results we conclude about the advantages of its use.
Resumo:
This paper describes a Multi-agent Scheduling System that assumes the existence of several Machines Agents (which are decision-making entities) distributed inside the Manufacturing System that interact and cooperate with other agents in order to obtain optimal or near-optimal global performances. Agents have to manage their internal behaviors and their relationships with other agents via cooperative negotiation in accordance with business policies defined by the user manager. Some Multi Agent Systems (MAS) organizational aspects are considered. An original Cooperation Mechanism for a Team-work based Architecture is proposed to address dynamic scheduling using Meta-Heuristics.
Resumo:
This paper proposes a novel agent-based approach to Meta-Heuristics self-configuration. Meta-heuristics are algorithms with parameters which need to be set up as efficient as possible in order to unsure its performance. A learning module for self-parameterization of Meta-heuristics (MH) in a Multi-Agent System (MAS) for resolution of scheduling problems is proposed in this work. The learning module is based on Case-based Reasoning (CBR) and two different integration approaches are proposed. A computational study is made for comparing the two CBR integration perspectives. Finally, some conclusions are reached and future work outlined.
Resumo:
This paper proposes two meta-heuristics (Genetic Algorithm and Evolutionary Particle Swarm Optimization) for solving a 15 bid-based case of Ancillary Services Dispatch in an Electricity Market. A Linear Programming approach is also included for comparison purposes. A test case based on the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is used to demonstrate that the use of meta-heuristics is suitable for solving this kind of optimization problem. Faster execution times and lower computational resources requirements are the most relevant advantages of the used meta-heuristics when compared with the Linear Programming approach.
Resumo:
Metaheuristics performance is highly dependent of the respective parameters which need to be tuned. Parameter tuning may allow a larger flexibility and robustness but requires a careful initialization. The process of defining which parameters setting should be used is not obvious. The values for parameters depend mainly on the problem, the instance to be solved, the search time available to spend in solving the problem, and the required quality of solution. This paper presents a learning module proposal for an autonomous parameterization of Metaheuristics, integrated on a Multi-Agent System for the resolution of Dynamic Scheduling problems. The proposed learning module is inspired on Autonomic Computing Self-Optimization concept, defining that systems must continuously and proactively improve their performance. For the learning implementation it is used Case-based Reasoning, which uses previous similar data to solve new cases. In the use of Case-based Reasoning it is assumed that similar cases have similar solutions. After a literature review on topics used, both AutoDynAgents system and Self-Optimization module are described. Finally, a computational study is presented where the proposed module is evaluated, obtained results are compared with previous ones, some conclusions are reached, and some future work is referred. It is expected that this proposal can be a great contribution for the self-parameterization of Metaheuristics and for the resolution of scheduling problems on dynamic environments.
Resumo:
This chapter addresses the resolution of dynamic scheduling by means of meta-heuristic and multi-agent systems. Scheduling is an important aspect of automation in manufacturing systems. Several contributions have been proposed, but the problem is far from being solved satisfactorily, especially if scheduling concerns real world applications. The proposed multi-agent scheduling system assumes the existence of several resource agents (which are decision-making entities based on meta-heuristics) distributed inside the manufacturing system that interact with other agents in order to obtain optimal or near-optimal global performances.
Resumo:
A manufacturing system has a natural dynamic nature observed through several kinds of random occurrences and perturbations on working conditions and requirements over time. For this kind of environment it is important the ability to efficient and effectively adapt, on a continuous basis, existing schedules according to the referred disturbances, keeping performance levels. The application of Meta-Heuristics and Multi-Agent Systems to the resolution of this class of real world scheduling problems seems really promising. This paper presents a prototype for MASDScheGATS (Multi-Agent System for Distributed Manufacturing Scheduling with Genetic Algorithms and Tabu Search).
Resumo:
Swarm Intelligence generally refers to a problem-solving ability that emerges from the interaction of simple information-processing units. The concept of Swarm suggests multiplicity, distribution, stochasticity, randomness, and messiness. The concept of Intelligence suggests that problem-solving approach is successful considering learning, creativity, cognition capabilities. This paper introduces some of the theoretical foundations, the biological motivation and fundamental aspects of swarm intelligence based optimization techniques such Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and Artificial Bees Colony (ABC) algorithms for scheduling optimization.
Resumo:
Hybridization of intelligent systems is a promising research field of computational intelligence focusing on combinations of multiple approaches to develop the next generation of intelligent systems. In this paper we will model a Manufacturing System by means of Multi-Agent Systems and Meta-Heuristics technologies, where each agent may represent a processing entity (machine). The objective of the system is to deal with the complex problem of Dynamic Scheduling in Manufacturing Systems.
Resumo:
A optimização e a aprendizagem em Sistemas Multi-Agente são consideradas duas áreas promissoras mas relativamente pouco exploradas. A optimização nestes ambientes deve ser capaz de lidar com o dinamismo. Os agentes podem alterar o seu comportamento baseando-se em aprendizagem recente ou em objectivos de optimização. As estratégias de aprendizagem podem melhorar o desempenho do sistema, dotando os agentes da capacidade de aprender, por exemplo, qual a técnica de optimização é mais adequada para a resolução de uma classe particular de problemas, ou qual a parametrização é mais adequada em determinado cenário. Nesta dissertação são estudadas algumas técnicas de resolução de problemas de Optimização Combinatória, sobretudo as Meta-heurísticas, e é efectuada uma revisão do estado da arte de Aprendizagem em Sistemas Multi-Agente. É também proposto um módulo de aprendizagem para a resolução de novos problemas de escalonamento, com base em experiência anterior. O módulo de Auto-Optimização desenvolvido, inspirado na Computação Autónoma, permite ao sistema a selecção automática da Meta-heurística a usar no processo de optimização, assim como a respectiva parametrização. Para tal, recorreu-se à utilização de Raciocínio baseado em Casos de modo que o sistema resultante seja capaz de aprender com a experiência adquirida na resolução de problemas similares. Dos resultados obtidos é possível concluir da vantagem da sua utilização e respectiva capacidade de adaptação a novos e eventuais cenários.
Resumo:
Os mercados de energia elétrica são atualmente uma realidade um pouco por todo o mundo. Contudo, não é consensual o modelo regulatório a utilizar, o que origina a utilização de diferentes modelos nos diversos países que deram início ao processo de liberalização e de reestruturação do sector elétrico. A esses países, dado que a energia elétrica não é um bem armazenável, pelo menos em grandes quantidades, colocam-se questões importantes relacionadas com a gestão propriamente dita do seu sistema elétrico. Essas questões implicam a adoção de regras impostas pelo regulador que permitam ultrapassar essas questões. Este trabalho apresenta um estudo feito aos mercados de energia elétrica existentes um pouco por todo o mundo e que o autor considerou serem os mais importantes. Foi também feito um estudo de ferramentas de otimização essencialmente baseado em meta-heurísticas aplicadas a problemas relacionados com a operação dos mercados e com os sistemas elétricos de energia, como é o exemplo da resolução do problema do Despacho Económico. Foi desenvolvida uma aplicação que simula o funcionamento de um mercado que atua com o modelo Pool Simétrico, em que são transmitidas as ofertas de venda e compra de energia elétrica por parte dos produtores, por um lado, e dos comercializadores, consumidores elegíveis ou intermediários financeiros, por outro, analisando a viabilidade técnica do Despacho Provisório. A análise da viabilidade técnica do Despacho Provisório é verificada através do modelo DC de trânsito de potências. No caso da inviabilidade do Despacho Provisório, por violação de restrições afetas ao problema, são determinadas medidas corretivas a esse despacho, com base nas ofertas realizadas e recorrendo a um Despacho Ótimo. Para a determinação do Despacho Ótimo recorreu-se à meta-heurística Algoritmos Genéticos. A aplicação foi desenvolvida no software MATLAB utilizando a ferramenta Graphical User Interfaces. A rede de teste utilizada foi a rede de 14 barramentos do Institute of Electrical and Electronics Engineers (IEEE). A aplicação mostra-se competente no que concerne à simulação de um mercado com tipo de funcionamento Pool Simétrico onde são efetuadas ofertas simples e onde as transações ocorrem no mercado diário, porém, não reflete o problema real relacionado a este tipo de mercados. Trata-se, portanto, de um simulador básico de um mercado de energia cujo modelo de funcionamento se baseia no tipo Pool Simétrico.
Resumo:
A optimização nas aplicações modernas assume um carácter fortemente interdisciplinar, relacionando-se com a necessidade de integração de diferentes técnicas e paradigmas na resolução de problemas reais complexos. O problema do escalonamento é recorrente no planeamento da produção. Sempre que uma ordem de fabrico é lançada, é necessário determinar que recursos serão utilizados e em que sequência as atividades serão executadas, para otimizar uma dada medida de desempenho. Embora ainda existam empresas a abordar o problema do escalonamento através de simples heurísticas, a proposta de sistemas de escalonamento tem-se evidenciado na literatura. Pretende-se nesta dissertação, a realização da análise de desempenho de Técnicas de Optimização, nomeadamente as meta-heurísticas, na resolução de problemas de optimização complexos – escalonamento de tarefas, particularmente no problema de minimização dos atrasos ponderados, 1||ΣwjTj. Assim sendo, foi desenvolvido um protótipo que serviu de suporte ao estudo computacional, com vista à avaliação do desempenho do Simulated Annealing (SA) e o Discrete Artificial Bee Colony (DABC). A resolução eficiente de um problema requer, em geral, a aplicação de diferentes métodos, e a afinação dos respetivos parâmetros. A afinação dos parâmetros pode permitir uma maior flexibilidade e robustez mas requer uma inicialização cuidadosa. Os parâmetros podem ter uma grande influência na eficiência e eficácia da pesquisa. A sua definição deve resultar de um cuidadoso esforço experimental no sentido da respectiva especificação. Foi usado, no âmbito deste trabalho de mestrado, para suportar a fase de parametrização das meta-heurísticas em análise, o planeamento de experiências de Taguchi. Da análise dos resultados, foi possível concluir que existem vantagem estatisticamente significativa no desempenho do DABC, mas quando analisada a eficiência é possível concluir que há vantagem do SA, que necessita de menos tempo computacional.